add basic support and optimization for qwen2-vl (#12104)
This commit is contained in:
parent
828fa01ad3
commit
9239fd4f12
2 changed files with 196 additions and 0 deletions
|
|
@ -1000,6 +1000,9 @@ def _optimize_pre(model, qtype=None):
|
||||||
if model.config.model_type == "qwen2_audio":
|
if model.config.model_type == "qwen2_audio":
|
||||||
from ipex_llm.transformers.models.qwen2 import merge_qkv
|
from ipex_llm.transformers.models.qwen2 import merge_qkv
|
||||||
model.language_model.apply(merge_qkv)
|
model.language_model.apply(merge_qkv)
|
||||||
|
if model.config.model_type == "qwen2_vl":
|
||||||
|
from ipex_llm.transformers.models.qwen2_vl import merge_qkv
|
||||||
|
model.apply(merge_qkv)
|
||||||
if model.config.model_type == "stablelm":
|
if model.config.model_type == "stablelm":
|
||||||
# For stablelm-zephyr-3b and stablelm-2-zephyr-1_6b
|
# For stablelm-zephyr-3b and stablelm-2-zephyr-1_6b
|
||||||
from ipex_llm.transformers.models.stablelm import merge_qkv
|
from ipex_llm.transformers.models.stablelm import merge_qkv
|
||||||
|
|
@ -1651,6 +1654,17 @@ def _optimize_post(model, lightweight_bmm=False):
|
||||||
qwen2_attention_forward)
|
qwen2_attention_forward)
|
||||||
elif model.config.model_type == "qwen2_audio":
|
elif model.config.model_type == "qwen2_audio":
|
||||||
_optimize_post(model.language_model, lightweight_bmm=lightweight_bmm)
|
_optimize_post(model.language_model, lightweight_bmm=lightweight_bmm)
|
||||||
|
elif model.config.model_type == "qwen2_vl":
|
||||||
|
modeling_module_name = model.__class__.__module__
|
||||||
|
module = importlib.import_module(modeling_module_name)
|
||||||
|
from ipex_llm.transformers.models.common import rms_norm_forward
|
||||||
|
from ipex_llm.transformers.models.qwen2 import qwen2_mlp_forward
|
||||||
|
from ipex_llm.transformers.models.qwen2_vl import qwen2_vl_model_forward
|
||||||
|
from ipex_llm.transformers.models.qwen2_vl import qwen2_vl_attention_forward
|
||||||
|
convert_forward(model, module.Qwen2RMSNorm, rms_norm_forward)
|
||||||
|
convert_forward(model, module.Qwen2MLP, qwen2_mlp_forward)
|
||||||
|
convert_forward(model, module.Qwen2VLModel, qwen2_vl_model_forward)
|
||||||
|
convert_forward(model, module.Qwen2VLAttention, qwen2_vl_attention_forward)
|
||||||
elif model.config.model_type == "cohere":
|
elif model.config.model_type == "cohere":
|
||||||
# for CohereForAI/c4ai-command-r-v01
|
# for CohereForAI/c4ai-command-r-v01
|
||||||
invalidInputError(version.parse(trans_version) >= version.parse("4.40.0"),
|
invalidInputError(version.parse(trans_version) >= version.parse("4.40.0"),
|
||||||
|
|
|
||||||
182
python/llm/src/ipex_llm/transformers/models/qwen2_vl.py
Normal file
182
python/llm/src/ipex_llm/transformers/models/qwen2_vl.py
Normal file
|
|
@ -0,0 +1,182 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
# Some parts of this file is adapted from
|
||||||
|
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/qwen2_vl/modeling_qwen2_vl.py
|
||||||
|
# which is licensed under Apache License 2.0:
|
||||||
|
#
|
||||||
|
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
|
||||||
|
#
|
||||||
|
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
||||||
|
# and OPT implementations in this library. It has been modified from its
|
||||||
|
# original forms to accommodate minor architectural differences compared
|
||||||
|
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
|
||||||
|
import math
|
||||||
|
from typing import Optional, Tuple, Union, List
|
||||||
|
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from ipex_llm.transformers.models.common import merge_qkv_base
|
||||||
|
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp8_kv_cache
|
||||||
|
from ipex_llm.transformers.models.utils import use_sdp, use_sdp_causal
|
||||||
|
from ipex_llm.transformers.kv import DynamicFp8Cache, DynamicNormalCache
|
||||||
|
|
||||||
|
from transformers.models.qwen2_vl.modeling_qwen2_vl import Qwen2VLAttention, Qwen2VLModel
|
||||||
|
from transformers.models.qwen2_vl.modeling_qwen2_vl import apply_multimodal_rotary_pos_emb
|
||||||
|
from transformers.models.qwen2_vl.modeling_qwen2_vl import repeat_kv
|
||||||
|
from transformers.modeling_outputs import BaseModelOutputWithPast
|
||||||
|
from transformers.cache_utils import Cache
|
||||||
|
|
||||||
|
|
||||||
|
def merge_qkv(module: torch.nn.Module):
|
||||||
|
merge_qkv_base(module, Qwen2VLAttention)
|
||||||
|
|
||||||
|
|
||||||
|
def qwen2_vl_model_forward(
|
||||||
|
self,
|
||||||
|
input_ids: torch.LongTensor = None,
|
||||||
|
attention_mask: Optional[torch.Tensor] = None,
|
||||||
|
position_ids: Optional[torch.LongTensor] = None,
|
||||||
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||||
|
use_cache: Optional[bool] = None,
|
||||||
|
output_attentions: Optional[bool] = None,
|
||||||
|
output_hidden_states: Optional[bool] = None,
|
||||||
|
return_dict: Optional[bool] = None,
|
||||||
|
cache_position: Optional[torch.LongTensor] = None,
|
||||||
|
) -> Union[Tuple, BaseModelOutputWithPast]:
|
||||||
|
# IPEX-LLM OPT: kv cache and quantize kv cache and sdp
|
||||||
|
inputs = input_ids if input_ids is not None else inputs_embeds
|
||||||
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||||
|
use_cache = True if inputs.device.type == "xpu" else use_cache
|
||||||
|
use_quantize_kv = use_quantize_kv_cache(self.layers[0].mlp.down_proj, inputs)
|
||||||
|
if use_cache:
|
||||||
|
if use_quantize_kv and not isinstance(past_key_values, DynamicFp8Cache):
|
||||||
|
past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values)
|
||||||
|
elif not use_quantize_kv and not isinstance(past_key_values, DynamicNormalCache):
|
||||||
|
past_key_values = DynamicNormalCache.from_legacy_cache(past_key_values)
|
||||||
|
|
||||||
|
return Qwen2VLModel.forward(
|
||||||
|
self=self,
|
||||||
|
input_ids=input_ids,
|
||||||
|
attention_mask=attention_mask,
|
||||||
|
position_ids=position_ids,
|
||||||
|
past_key_values=past_key_values,
|
||||||
|
inputs_embeds=inputs_embeds,
|
||||||
|
use_cache=use_cache,
|
||||||
|
output_attentions=output_attentions,
|
||||||
|
output_hidden_states=output_hidden_states,
|
||||||
|
return_dict=return_dict,
|
||||||
|
cache_position=cache_position,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def qwen2_vl_attention_forward(
|
||||||
|
self,
|
||||||
|
hidden_states: torch.Tensor,
|
||||||
|
attention_mask: Optional[torch.Tensor] = None,
|
||||||
|
position_ids: Optional[torch.LongTensor] = None,
|
||||||
|
past_key_value: Optional[Cache] = None,
|
||||||
|
output_attentions: bool = False,
|
||||||
|
use_cache: bool = False,
|
||||||
|
cache_position: Optional[torch.LongTensor] = None,
|
||||||
|
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]]=None,
|
||||||
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||||
|
bsz, q_len, _ = hidden_states.size()
|
||||||
|
|
||||||
|
qkv = self.qkv_proj(hidden_states)
|
||||||
|
qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
|
||||||
|
qkv = qkv.transpose(1, 2)
|
||||||
|
query_states, key_states, value_states = qkv.split([self.num_heads,
|
||||||
|
self.num_key_value_heads,
|
||||||
|
self.num_key_value_heads], dim=1)
|
||||||
|
|
||||||
|
if position_embeddings is None:
|
||||||
|
cos, sin = self.rotary_emb(value_states, position_ids)
|
||||||
|
else:
|
||||||
|
cos, sin = position_embeddings
|
||||||
|
query_states, key_states = apply_multimodal_rotary_pos_emb(
|
||||||
|
query_states, key_states, cos, sin, self.rope_scaling["mrope_section"]
|
||||||
|
)
|
||||||
|
|
||||||
|
kv_seq_len = key_states.shape[-2]
|
||||||
|
if past_key_value is not None:
|
||||||
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
||||||
|
key_states, value_states = past_key_value.update(key_states, value_states,
|
||||||
|
self.layer_idx, cache_kwargs)
|
||||||
|
kv_seq_len = key_states.shape[-2]
|
||||||
|
|
||||||
|
attn_weights = None
|
||||||
|
if use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
|
||||||
|
import xe_addons
|
||||||
|
if isinstance(past_key_value, DynamicFp8Cache):
|
||||||
|
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states,
|
||||||
|
attention_mask)
|
||||||
|
else:
|
||||||
|
attn_output = xe_addons.sdp(query_states, key_states, value_states,
|
||||||
|
attention_mask)
|
||||||
|
elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
|
||||||
|
import xe_addons
|
||||||
|
if isinstance(past_key_value, DynamicFp8Cache):
|
||||||
|
attn_output = xe_addons.sdp_fp8_causal(query_states, key_states,
|
||||||
|
value_states, attention_mask)
|
||||||
|
else:
|
||||||
|
attn_output = xe_addons.sdp_causal(query_states, key_states,
|
||||||
|
value_states, attention_mask)
|
||||||
|
else:
|
||||||
|
if isinstance(past_key_value, DynamicFp8Cache):
|
||||||
|
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
|
||||||
|
query_states.dtype)
|
||||||
|
# repeat k/v heads if n_kv_heads < n_heads
|
||||||
|
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||||||
|
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||||||
|
|
||||||
|
attn_weights = torch.matmul(query_states,
|
||||||
|
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
||||||
|
|
||||||
|
if attention_mask is not None: # no matter the length, we just slice it
|
||||||
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
||||||
|
attn_weights = attn_weights + causal_mask
|
||||||
|
|
||||||
|
# upcast attention to fp32
|
||||||
|
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1,
|
||||||
|
dtype=torch.float32).to(query_states.dtype)
|
||||||
|
attn_weights = torch.nn.functional.dropout(attn_weights, p=self.attention_dropout,
|
||||||
|
training=self.training)
|
||||||
|
attn_output = torch.matmul(attn_weights, value_states)
|
||||||
|
|
||||||
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||||
|
attn_output = attn_output.reshape(bsz, q_len, -1)
|
||||||
|
|
||||||
|
attn_output = self.o_proj(attn_output)
|
||||||
|
|
||||||
|
if not output_attentions:
|
||||||
|
attn_weights = None
|
||||||
|
|
||||||
|
return attn_output, attn_weights, past_key_value
|
||||||
Loading…
Reference in a new issue