diff --git a/python/llm/src/ipex_llm/transformers/convert.py b/python/llm/src/ipex_llm/transformers/convert.py index e23de58e..e77bd87a 100644 --- a/python/llm/src/ipex_llm/transformers/convert.py +++ b/python/llm/src/ipex_llm/transformers/convert.py @@ -1000,6 +1000,9 @@ def _optimize_pre(model, qtype=None): if model.config.model_type == "qwen2_audio": from ipex_llm.transformers.models.qwen2 import merge_qkv model.language_model.apply(merge_qkv) + if model.config.model_type == "qwen2_vl": + from ipex_llm.transformers.models.qwen2_vl import merge_qkv + model.apply(merge_qkv) if model.config.model_type == "stablelm": # For stablelm-zephyr-3b and stablelm-2-zephyr-1_6b from ipex_llm.transformers.models.stablelm import merge_qkv @@ -1651,6 +1654,17 @@ def _optimize_post(model, lightweight_bmm=False): qwen2_attention_forward) elif model.config.model_type == "qwen2_audio": _optimize_post(model.language_model, lightweight_bmm=lightweight_bmm) + elif model.config.model_type == "qwen2_vl": + modeling_module_name = model.__class__.__module__ + module = importlib.import_module(modeling_module_name) + from ipex_llm.transformers.models.common import rms_norm_forward + from ipex_llm.transformers.models.qwen2 import qwen2_mlp_forward + from ipex_llm.transformers.models.qwen2_vl import qwen2_vl_model_forward + from ipex_llm.transformers.models.qwen2_vl import qwen2_vl_attention_forward + convert_forward(model, module.Qwen2RMSNorm, rms_norm_forward) + convert_forward(model, module.Qwen2MLP, qwen2_mlp_forward) + convert_forward(model, module.Qwen2VLModel, qwen2_vl_model_forward) + convert_forward(model, module.Qwen2VLAttention, qwen2_vl_attention_forward) elif model.config.model_type == "cohere": # for CohereForAI/c4ai-command-r-v01 invalidInputError(version.parse(trans_version) >= version.parse("4.40.0"), diff --git a/python/llm/src/ipex_llm/transformers/models/qwen2_vl.py b/python/llm/src/ipex_llm/transformers/models/qwen2_vl.py new file mode 100644 index 00000000..871a8d68 --- /dev/null +++ b/python/llm/src/ipex_llm/transformers/models/qwen2_vl.py @@ -0,0 +1,182 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# +# Some parts of this file is adapted from +# https://github.com/huggingface/transformers/blob/main/src/transformers/models/qwen2_vl/modeling_qwen2_vl.py +# which is licensed under Apache License 2.0: +# +# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved. +# +# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX +# and OPT implementations in this library. It has been modified from its +# original forms to accommodate minor architectural differences compared +# to GPT-NeoX and OPT used by the Meta AI team that trained the model. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +import math +from typing import Optional, Tuple, Union, List + +import torch + +from ipex_llm.transformers.models.common import merge_qkv_base +from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp8_kv_cache +from ipex_llm.transformers.models.utils import use_sdp, use_sdp_causal +from ipex_llm.transformers.kv import DynamicFp8Cache, DynamicNormalCache + +from transformers.models.qwen2_vl.modeling_qwen2_vl import Qwen2VLAttention, Qwen2VLModel +from transformers.models.qwen2_vl.modeling_qwen2_vl import apply_multimodal_rotary_pos_emb +from transformers.models.qwen2_vl.modeling_qwen2_vl import repeat_kv +from transformers.modeling_outputs import BaseModelOutputWithPast +from transformers.cache_utils import Cache + + +def merge_qkv(module: torch.nn.Module): + merge_qkv_base(module, Qwen2VLAttention) + + +def qwen2_vl_model_forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + cache_position: Optional[torch.LongTensor] = None, +) -> Union[Tuple, BaseModelOutputWithPast]: + # IPEX-LLM OPT: kv cache and quantize kv cache and sdp + inputs = input_ids if input_ids is not None else inputs_embeds + use_cache = use_cache if use_cache is not None else self.config.use_cache + use_cache = True if inputs.device.type == "xpu" else use_cache + use_quantize_kv = use_quantize_kv_cache(self.layers[0].mlp.down_proj, inputs) + if use_cache: + if use_quantize_kv and not isinstance(past_key_values, DynamicFp8Cache): + past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values) + elif not use_quantize_kv and not isinstance(past_key_values, DynamicNormalCache): + past_key_values = DynamicNormalCache.from_legacy_cache(past_key_values) + + return Qwen2VLModel.forward( + self=self, + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + cache_position=cache_position, + ) + + +def qwen2_vl_attention_forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Cache] = None, + output_attentions: bool = False, + use_cache: bool = False, + cache_position: Optional[torch.LongTensor] = None, + position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]]=None, +) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + bsz, q_len, _ = hidden_states.size() + + qkv = self.qkv_proj(hidden_states) + qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim) + qkv = qkv.transpose(1, 2) + query_states, key_states, value_states = qkv.split([self.num_heads, + self.num_key_value_heads, + self.num_key_value_heads], dim=1) + + if position_embeddings is None: + cos, sin = self.rotary_emb(value_states, position_ids) + else: + cos, sin = position_embeddings + query_states, key_states = apply_multimodal_rotary_pos_emb( + query_states, key_states, cos, sin, self.rope_scaling["mrope_section"] + ) + + kv_seq_len = key_states.shape[-2] + if past_key_value is not None: + cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} + key_states, value_states = past_key_value.update(key_states, value_states, + self.layer_idx, cache_kwargs) + kv_seq_len = key_states.shape[-2] + + attn_weights = None + if use_sdp(q_len, kv_seq_len, self.head_dim, query_states): + import xe_addons + if isinstance(past_key_value, DynamicFp8Cache): + attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states, + attention_mask) + else: + attn_output = xe_addons.sdp(query_states, key_states, value_states, + attention_mask) + elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training): + import xe_addons + if isinstance(past_key_value, DynamicFp8Cache): + attn_output = xe_addons.sdp_fp8_causal(query_states, key_states, + value_states, attention_mask) + else: + attn_output = xe_addons.sdp_causal(query_states, key_states, + value_states, attention_mask) + else: + if isinstance(past_key_value, DynamicFp8Cache): + key_states, value_states = restore_fp8_kv_cache(key_states, value_states, + query_states.dtype) + # repeat k/v heads if n_kv_heads < n_heads + key_states = repeat_kv(key_states, self.num_key_value_groups) + value_states = repeat_kv(value_states, self.num_key_value_groups) + + attn_weights = torch.matmul(query_states, + key_states.transpose(2, 3)) / math.sqrt(self.head_dim) + + if attention_mask is not None: # no matter the length, we just slice it + causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] + attn_weights = attn_weights + causal_mask + + # upcast attention to fp32 + attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1, + dtype=torch.float32).to(query_states.dtype) + attn_weights = torch.nn.functional.dropout(attn_weights, p=self.attention_dropout, + training=self.training) + attn_output = torch.matmul(attn_weights, value_states) + + attn_output = attn_output.transpose(1, 2).contiguous() + attn_output = attn_output.reshape(bsz, q_len, -1) + + attn_output = self.o_proj(attn_output) + + if not output_attentions: + attn_weights = None + + return attn_output, attn_weights, past_key_value