diff --git a/docker/llm/README.md b/docker/llm/README.md
index 52cc64c6..bc7e0f54 100644
--- a/docker/llm/README.md
+++ b/docker/llm/README.md
@@ -159,9 +159,12 @@ Run the following command to pull image from dockerhub:
docker pull intelanalytics/ipex-llm-xpu:2.1.0-SNAPSHOT
```
-### 2. Start ipex-llm-xpu Docker Container
+### 2. Start Chat Inference
+
+We provide `chat.py` for conversational AI. If your model is Llama-2-7b-chat-hf and mounted on /llm/models, you can execute the following command to initiate a conversation:
To map the xpu into the container, you need to specify --device=/dev/dri when booting the container.
+
```bash
#/bin/bash
export DOCKER_IMAGE=intelanalytics/ipex-llm-xpu:2.1.0-SNAPSHOT
@@ -175,35 +178,43 @@ sudo docker run -itd \
--name=$CONTAINER_NAME \
--shm-size="16g" \
-v $MODEL_PATH:/llm/models \
- $DOCKER_IMAGE
+ $DOCKER_IMAGE bash -c "python chat.py --model-path /llm/models/Llama-2-7b-chat-hf"
```
-Access the container:
-```
-docker exec -it $CONTAINER_NAME bash
-```
-To verify the device is successfully mapped into the container, run `sycl-ls` to check the result. In a machine with Arc A770, the sampled output is:
+### 3. Quick Performance Benchmark
+Execute a quick performance benchmark by starting the ipex-llm-xpu container, specifying the model, test API, and device, then running the benchmark.sh script.
+
+To map the XPU into the container, specify `--device=/dev/dri` when booting the container.
```bash
-root@arda-arc12:/# sycl-ls
-[opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device 1.2 [2023.16.7.0.21_160000]
-[opencl:cpu:1] Intel(R) OpenCL, 13th Gen Intel(R) Core(TM) i9-13900K 3.0 [2023.16.7.0.21_160000]
-[opencl:gpu:2] Intel(R) OpenCL Graphics, Intel(R) Arc(TM) A770 Graphics 3.0 [23.17.26241.33]
-[ext_oneapi_level_zero:gpu:0] Intel(R) Level-Zero, Intel(R) Arc(TM) A770 Graphics 1.3 [1.3.26241]
+#/bin/bash
+export DOCKER_IMAGE=intelanalytics/ipex-llm-xpu:2.1.0-SNAPSHOT
+export CONTAINER_NAME=my_container
+export MODEL_PATH=/llm/models [change to your model path]
+
+sudo docker run -itd \
+ --net=host \
+ --device=/dev/dri \
+ --memory="32G" \
+ --name=$CONTAINER_NAME \
+ --shm-size="16g" \
+ -v $MODEL_PATH:/llm/models \
+ -e REPO_IDS="meta-llama/Llama-2-7b-chat-hf" \
+ -e TEST_APIS="transformer_int4_gpu" \
+ -e DEVICE=Arc \
+ $DOCKER_IMAGE /llm/benchmark.sh
```
-### 3. Start Inference
-**Chat Interface**: Use `chat.py` for conversational AI.
+Customize environment variables to specify:
-For example, if your model is Llama-2-7b-chat-hf and mounted on /llm/models, you can excute the following command to initiate a conversation:
- ```bash
- cd /llm
- python chat.py --model-path /llm/models/Llama-2-7b-chat-hf
- ```
+- **REPO_IDS:** Model's name and organization, separated by commas if multiple values exist.
+- **TEST_APIS:** Different test functions based on the machine, separated by commas if multiple values exist.
+- **DEVICE:** Type of device - Max, Flex, Arc.
-To run inference using `IPEX-LLM` using xpu, you could refer to this [documentation](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU).
+**Result**
+Upon completion, you can obtain a CSV result file, the content of CSV results will be printed out. You can mainly look at the results of columns `1st token avg latency (ms)` and `2+ avg latency (ms/token)` for the benchmark results.
## IPEX-LLM Serving on CPU
FastChat is an open platform for training, serving, and evaluating large language model based chatbots. You can find the detailed information at their [homepage](https://github.com/lm-sys/FastChat).
diff --git a/docker/llm/inference/xpu/docker/Dockerfile b/docker/llm/inference/xpu/docker/Dockerfile
index b3269627..2862a463 100644
--- a/docker/llm/inference/xpu/docker/Dockerfile
+++ b/docker/llm/inference/xpu/docker/Dockerfile
@@ -9,6 +9,7 @@ ENV USE_XETLA=OFF
ENV SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
COPY chat.py /llm/chat.py
+COPY benchmark.sh /llm/benchmark.sh
# Disable pip's cache behavior
ARG PIP_NO_CACHE_DIR=false
@@ -44,10 +45,20 @@ RUN curl -fsSL https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-P
apt-get install -y intel-opencl-icd intel-level-zero-gpu=1.3.26241.33-647~22.04 level-zero level-zero-dev --allow-downgrades && \
# Install related libary of chat.py
pip install --upgrade colorama && \
+ # Download all-in-one benchmark and examples
+ git clone https://github.com/intel-analytics/ipex-llm && \
+ cp -r ./ipex-llm/python/llm/dev/benchmark/ ./benchmark && \
+ cp -r ./ipex-llm/python/llm/example/GPU/HF-Transformers-AutoModels/Model ./examples && \
# Install vllm dependencies
pip install --upgrade fastapi && \
pip install --upgrade "uvicorn[standard]" && \
# Download vLLM-Serving
git clone https://github.com/intel-analytics/IPEX-LLM && \
cp -r ./IPEX-LLM/python/llm/example/GPU/vLLM-Serving/ ./vLLM-Serving && \
- rm -rf ./IPEX-LLM
+ rm -rf ./IPEX-LLM && \
+ # Install related library of benchmarking
+ pip install pandas && \
+ pip install omegaconf && \
+ chmod +x /llm/benchmark.sh
+
+WORKDIR /llm/
\ No newline at end of file
diff --git a/docker/llm/inference/xpu/docker/benchmark.sh b/docker/llm/inference/xpu/docker/benchmark.sh
new file mode 100644
index 00000000..06161d80
--- /dev/null
+++ b/docker/llm/inference/xpu/docker/benchmark.sh
@@ -0,0 +1,53 @@
+#!/bin/bash
+
+echo "Repo ID is: $REPO_IDS"
+echo "Test API is: $TEST_APIS"
+echo "Device is: $DEVICE"
+
+cd /benchmark/all-in-one
+
+# Replace local_model_hub
+sed -i "s/'path to your local model hub'/'\/llm\/models'/" config.yaml
+
+# Comment out repo_id
+sed -i -E "/repo_id:/,/local_model_hub/ s/^(\s*-)/ #&/" config.yaml
+
+# Modify config.yaml with repo_id
+if [ -n "$REPO_IDS" ]; then
+ for REPO_ID in $(echo "$REPO_IDS" | tr ',' '\n'); do
+ # Add each repo_id value as a subitem of repo_id list
+ sed -i -E "/^(repo_id:)/a \ - '$REPO_ID'" config.yaml
+ done
+fi
+
+# Comment out test_api
+sed -i -E "/test_api:/,/cpu_embedding/ s/^(\s*-)/ #&/" config.yaml
+
+# Modify config.yaml with test_api
+if [ -n "$TEST_APIS" ]; then
+ for TEST_API in $(echo "$TEST_APIS" | tr ',' '\n'); do
+ # Add each test_api value as a subitem of test_api list
+ sed -i -E "/^(test_api:)/a \ - '$TEST_API'" config.yaml
+ done
+fi
+
+
+if [[ "$DEVICE" == "Arc" || "$DEVICE" == "ARC" ]]; then
+ source ipex-llm-init -g --device Arc
+ python run.py
+elif [[ "$DEVICE" == "Flex" || "$DEVICE" == "FLEX" ]]; then
+ source ipex-llm-init -g --device Flex
+ python run.py
+elif [[ "$DEVICE" == "Max" || "$DEVICE" == "MAX" ]]; then
+ source ipex-llm-init -g --device Max
+ python run.py
+else
+ echo "Invalid DEVICE specified."
+fi
+
+# print out results
+for file in *.csv; do
+ echo ""
+ echo "filename: $file"
+ cat "$file"
+done
diff --git a/docs/readthedocs/source/_templates/sidebar_quicklinks.html b/docs/readthedocs/source/_templates/sidebar_quicklinks.html
index b720c4f7..fd7f865b 100644
--- a/docs/readthedocs/source/_templates/sidebar_quicklinks.html
+++ b/docs/readthedocs/source/_templates/sidebar_quicklinks.html
@@ -28,6 +28,9 @@
Install IPEX-LLM in Docker on Windows with Intel GPU
+
+ Run PyTorch Inference on Intel GPU using Docker (on Linux or WSL)
+
Run Local RAG using Langchain-Chatchat on Intel GPU
diff --git a/docs/readthedocs/source/doc/LLM/Quickstart/docker_pytorch_inference_gpu.md b/docs/readthedocs/source/doc/LLM/Quickstart/docker_pytorch_inference_gpu.md
new file mode 100644
index 00000000..7902bcde
--- /dev/null
+++ b/docs/readthedocs/source/doc/LLM/Quickstart/docker_pytorch_inference_gpu.md
@@ -0,0 +1,210 @@
+# Run PyTorch Inference on Intel GPU using Docker (on Linux or WSL)
+
+We can run PyTorch Inference Benchmark, Chat Service and PyTorch Examples on Intel GPUs within Docker (on Linux or WSL).
+
+## Install Docker
+
+1. Linux Installation
+
+ Follow the instructions in this [guide](https://www.docker.com/get-started/) to install Docker on Linux.
+
+2. Windows Installation
+
+ For Windows installation, refer to this [guide](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/docker_windows_gpu.html#install-docker-on-windows).
+
+## Launch Docker
+
+Prepare ipex-llm-xpu Docker Image:
+```bash
+docker pull intelanalytics/ipex-llm-xpu:2.1.0-SNAPSHOT
+```
+
+Start ipex-llm-xpu Docker Container:
+```bash
+export DOCKER_IMAGE=intelanalytics/ipex-llm-xpu:2.1.0-SNAPSHOT
+export CONTAINER_NAME=my_container
+export MODEL_PATH=/llm/models[change to your model path]
+
+docker run -itd \
+ --net=host \
+ --device=/dev/dri \
+ --memory="32G" \
+ --name=$CONTAINER_NAME \
+ --shm-size="16g" \
+ -v $MODEL_PATH:/llm/models \
+ $DOCKER_IMAGE
+```
+
+Access the container:
+```
+docker exec -it $CONTAINER_NAME bash
+```
+
+To verify the device is successfully mapped into the container, run `sycl-ls` to check the result. In a machine with Arc A770, the sampled output is:
+
+```bash
+root@arda-arc12:/# sycl-ls
+[opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device 1.2 [2023.16.7.0.21_160000]
+[opencl:cpu:1] Intel(R) OpenCL, 13th Gen Intel(R) Core(TM) i9-13900K 3.0 [2023.16.7.0.21_160000]
+[opencl:gpu:2] Intel(R) OpenCL Graphics, Intel(R) Arc(TM) A770 Graphics 3.0 [23.17.26241.33]
+[ext_oneapi_level_zero:gpu:0] Intel(R) Level-Zero, Intel(R) Arc(TM) A770 Graphics 1.3 [1.3.26241]
+```
+
+```eval_rst
+.. tip::
+
+ You can run the Env-Check script to verify your ipex-llm installation and runtime environment.
+
+ .. code-block:: bash
+
+ cd /ipex-llm/python/llm/scripts
+ bash env-check.sh
+
+
+```
+
+## Run Inference Benchmark
+
+Navigate to benchmark directory, and modify the `config.yaml` under the `all-in-one` folder for benchmark configurations.
+```bash
+cd /benchmark/all-in-one
+vim config.yaml
+```
+
+**Modify config.yaml**
+```eval_rst
+.. note::
+
+ ``dtype``: The model is originally loaded in this data type. After ipex-llm conversion, all the non-linear layers remain to use this data type.
+
+ ``qtype``: ipex-llm will convert all the linear-layers' weight to this data type.
+```
+
+
+```yaml
+repo_id:
+ # - 'THUDM/chatglm2-6b'
+ - 'meta-llama/Llama-2-7b-chat-hf'
+ # - 'liuhaotian/llava-v1.5-7b' # requires a LLAVA_REPO_DIR env variables pointing to the llava dir; added only for gpu win related test_api now
+local_model_hub: 'path to your local model hub'
+warm_up: 1 # must set >=2 when run "pipeline_parallel_gpu" test_api
+num_trials: 3
+num_beams: 1 # default to greedy search
+low_bit: 'sym_int4' # default to use 'sym_int4' (i.e. symmetric int4)
+batch_size: 1 # default to 1
+in_out_pairs:
+ - '32-32'
+ - '1024-128'
+test_api:
+ - "transformer_int4_gpu" # on Intel GPU, transformer-like API, (qtype=int4)
+ # - "transformer_int4_gpu_win" # on Intel GPU for Windows, transformer-like API, (qtype=int4)
+ # - "transformer_int4_fp16_gpu" # on Intel GPU, transformer-like API, (qtype=int4), (dtype=fp16)
+ # - "transformer_int4_fp16_gpu_win" # on Intel GPU for Windows, transformer-like API, (qtype=int4), (dtype=fp16)
+ # - "transformer_int4_loadlowbit_gpu_win" # on Intel GPU for Windows, transformer-like API, (qtype=int4), use load_low_bit API. Please make sure you have used the save.py to save the converted low bit model
+ # - "ipex_fp16_gpu" # on Intel GPU, use native transformers API, (dtype=fp16)
+ # - "bigdl_fp16_gpu" # on Intel GPU, use ipex-llm transformers API, (dtype=fp16), (qtype=fp16)
+ # - "optimize_model_gpu" # on Intel GPU, can optimize any pytorch models include transformer model
+ # - "deepspeed_optimize_model_gpu" # on Intel GPU, deepspeed autotp inference
+ # - "pipeline_parallel_gpu" # on Intel GPU, pipeline parallel inference
+ # - "speculative_gpu" # on Intel GPU, inference with self-speculative decoding
+ # - "transformer_int4" # on Intel CPU, transformer-like API, (qtype=int4)
+ # - "native_int4" # on Intel CPU
+ # - "optimize_model" # on Intel CPU, can optimize any pytorch models include transformer model
+ # - "pytorch_autocast_bf16" # on Intel CPU
+ # - "transformer_autocast_bf16" # on Intel CPU
+ # - "bigdl_ipex_bf16" # on Intel CPU, (qtype=bf16)
+ # - "bigdl_ipex_int4" # on Intel CPU, (qtype=int4)
+ # - "bigdl_ipex_int8" # on Intel CPU, (qtype=int8)
+ # - "speculative_cpu" # on Intel CPU, inference with self-speculative decoding
+ # - "deepspeed_transformer_int4_cpu" # on Intel CPU, deepspeed autotp inference
+cpu_embedding: False # whether put embedding to CPU
+streaming: False # whether output in streaming way (only avaiable now for gpu win related test_api)
+use_fp16_torch_dtype: True # whether use fp16 for non-linear layer (only avaiable now for "pipeline_parallel_gpu" test_api)
+n_gpu: 2 # number of GPUs to use (only avaiable now for "pipeline_parallel_gpu" test_api)
+```
+
+Some parameters in the yaml file that you can configure:
+
+
+- `repo_id`: The name of the model and its organization.
+- `local_model_hub`: The folder path where the models are stored on your machine. Replace 'path to your local model hub' with /llm/models.
+- `warm_up`: The number of warmup trials before performance benchmarking (must set to >= 2 when using "pipeline_parallel_gpu" test_api).
+- `num_trials`: The number of runs for performance benchmarking (the final result is the average of all trials).
+- `low_bit`: The low_bit precision you want to convert to for benchmarking.
+- `batch_size`: The number of samples on which the models make predictions in one forward pass.
+- `in_out_pairs`: Input sequence length and output sequence length combined by '-'.
+- `test_api`: Different test functions for different machines.
+- `cpu_embedding`: Whether to put embedding on CPU (only available for windows GPU-related test_api).
+- `streaming`: Whether to output in a streaming way (only available for GPU Windows-related test_api).
+- `use_fp16_torch_dtype`: Whether to use fp16 for the non-linear layer (only available for "pipeline_parallel_gpu" test_api).
+- `n_gpu`: Number of GPUs to use (only available for "pipeline_parallel_gpu" test_api).
+
+
+```eval_rst
+.. note::
+
+ If you want to benchmark the performance without warmup, you can set ``warm_up: 0`` and ``num_trials: 1`` in ``config.yaml``, and run each single model and in_out_pair separately.
+```
+
+
+After configuring the `config.yaml`, run the following scripts:
+```bash
+source ipex-llm-init --gpu --device
+python run.py
+```
+
+
+**Result**
+
+After the benchmarking is completed, you can obtain a CSV result file under the current folder. You can mainly look at the results of columns `1st token avg latency (ms)` and `2+ avg latency (ms/token)` for the benchmark results. You can also check whether the column `actual input/output tokens` is consistent with the column `input/output tokens` and whether the parameters you specified in `config.yaml` have been successfully applied in the benchmarking.
+
+
+## Run Chat Service
+
+We provide `chat.py` for conversational AI.
+
+For example, if your model is Llama-2-7b-chat-hf and mounted on /llm/models, you can execute the following command to initiate a conversation:
+ ```bash
+ cd /llm
+ python chat.py --model-path /llm/models/Llama-2-7b-chat-hf
+ ```
+
+Here is a demostration:
+
+
+
+
+
+
+## Run PyTorch Examples
+
+We provide several PyTorch examples that you could apply IPEX-LLM INT4 optimizations on models on Intel GPUs
+
+For example, if your model is Llama-2-7b-chat-hf and mounted on /llm/models, you can navigate to /examples/llama2 directory, excute the following command to run example:
+ ```bash
+ cd /examples/
+ python ./generate.py --repo-id-or-model-path /llm/models/Llama-2-7b-chat-hf --prompt PROMPT --n-predict N_PREDICT
+ ```
+
+
+Arguments info:
+- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Llama2 model (e.g. `meta-llama/Llama-2-7b-chat-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'meta-llama/Llama-2-7b-chat-hf'`.
+- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
+- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
+
+**Sample Output**
+```log
+Inference time: xxxx s
+-------------------- Prompt --------------------
+[INST] <>
+
+<>
+
+What is AI? [/INST]
+-------------------- Output --------------------
+[INST] <>
+
+<>
+
+What is AI? [/INST] Artificial intelligence (AI) is the broader field of research and development aimed at creating machines that can perform tasks that typically require human intelligence,
+```
\ No newline at end of file
diff --git a/docs/readthedocs/source/doc/LLM/Quickstart/index.rst b/docs/readthedocs/source/doc/LLM/Quickstart/index.rst
index a5c58771..472c352e 100644
--- a/docs/readthedocs/source/doc/LLM/Quickstart/index.rst
+++ b/docs/readthedocs/source/doc/LLM/Quickstart/index.rst
@@ -12,6 +12,7 @@ This section includes efficient guide to show you how to:
* `Install IPEX-LLM on Linux with Intel GPU <./install_linux_gpu.html>`_
* `Install IPEX-LLM on Windows with Intel GPU <./install_windows_gpu.html>`_
* `Install IPEX-LLM in Docker on Windows with Intel GPU <./docker_windows_gpu.html>`_
+* `Run PyTorch Inference on Intel GPU using Docker (on Linux or WSL) <./docker_benchmark_quickstart.html>`_
* `Run Performance Benchmarking with IPEX-LLM <./benchmark_quickstart.html>`_
* `Run Local RAG using Langchain-Chatchat on Intel GPU <./chatchat_quickstart.html>`_
* `Run Text Generation WebUI on Intel GPU <./webui_quickstart.html>`_
diff --git a/python/llm/dev/benchmark/all-in-one/config.yaml b/python/llm/dev/benchmark/all-in-one/config.yaml
index 30227b0e..9df48a01 100644
--- a/python/llm/dev/benchmark/all-in-one/config.yaml
+++ b/python/llm/dev/benchmark/all-in-one/config.yaml
@@ -12,27 +12,27 @@ in_out_pairs:
- '32-32'
- '1024-128'
test_api:
- - "transformer_int4_gpu" # on Intel GPU
- # - "transformer_int4_fp16_gpu" # on Intel GPU, use fp16 for non-linear layer
- # - "ipex_fp16_gpu" # on Intel GPU
- # - "bigdl_fp16_gpu" # on Intel GPU
- # - "optimize_model_gpu" # on Intel GPU
- # - "transformer_int4_gpu_win" # on Intel GPU for Windows
- # - "transformer_int4_fp16_gpu_win" # on Intel GPU for Windows, use fp16 for non-linear layer
- # - "transformer_int4_loadlowbit_gpu_win" # on Intel GPU for Windows using load_low_bit API. Please make sure you have used the save.py to save the converted low bit model
- # - "deepspeed_optimize_model_gpu" # deepspeed autotp on Intel GPU
- # - "pipeline_parallel_gpu" # pipeline parallel inference on Intel GPU
- # - "speculative_gpu"
- # - "transformer_int4"
- # - "native_int4"
- # - "optimize_model"
- # - "pytorch_autocast_bf16"
- # - "transformer_autocast_bf16"
- # - "bigdl_ipex_bf16"
- # - "bigdl_ipex_int4"
- # - "bigdl_ipex_int8"
- # - "speculative_cpu"
- # - "deepspeed_transformer_int4_cpu" # on Intel SPR Server
+ - "transformer_int4_gpu" # on Intel GPU, transformer-like API, (qtype=int4)
+ # - "transformer_int4_gpu_win" # on Intel GPU for Windows, transformer-like API, (qtype=int4)
+ # - "transformer_int4_fp16_gpu" # on Intel GPU, transformer-like API, (qtype=int4), (dtype=fp16)
+ # - "transformer_int4_fp16_gpu_win" # on Intel GPU for Windows, transformer-like API, (qtype=int4), (dtype=fp16)
+ # - "transformer_int4_loadlowbit_gpu_win" # on Intel GPU for Windows, transformer-like API, (qtype=int4), use load_low_bit API. Please make sure you have used the save.py to save the converted low bit model
+ # - "ipex_fp16_gpu" # on Intel GPU, use native transformers API, (dtype=fp16)
+ # - "bigdl_fp16_gpu" # on Intel GPU, use ipex-llm transformers API, (dtype=fp16), (qtype=fp16)
+ # - "optimize_model_gpu" # on Intel GPU, can optimize any pytorch models include transformer model
+ # - "deepspeed_optimize_model_gpu" # on Intel GPU, deepspeed autotp inference
+ # - "pipeline_parallel_gpu" # on Intel GPU, pipeline parallel inference
+ # - "speculative_gpu" # on Intel GPU, inference with self-speculative decoding
+ # - "transformer_int4" # on Intel CPU, transformer-like API, (qtype=int4)
+ # - "native_int4" # on Intel CPU
+ # - "optimize_model" # on Intel CPU, can optimize any pytorch models include transformer model
+ # - "pytorch_autocast_bf16" # on Intel CPU
+ # - "transformer_autocast_bf16" # on Intel CPU
+ # - "bigdl_ipex_bf16" # on Intel CPU, (qtype=bf16)
+ # - "bigdl_ipex_int4" # on Intel CPU, (qtype=int4)
+ # - "bigdl_ipex_int8" # on Intel CPU, (qtype=int8)
+ # - "speculative_cpu" # on Intel CPU, inference with self-speculative decoding
+ # - "deepspeed_transformer_int4_cpu" # on Intel CPU, deepspeed autotp inference
cpu_embedding: False # whether put embedding to CPU
streaming: False # whether output in streaming way (only avaiable now for gpu win related test_api)
use_fp16_torch_dtype: True # whether use fp16 for non-linear layer (only avaiable now for "pipeline_parallel_gpu" test_api)