Add MiniCPM-Llama3-V-2_5 GPU example (#11693)
* Add MiniCPM-Llama3-V-2_5 GPU example * fix
This commit is contained in:
		
							parent
							
								
									808d9a7bae
								
							
						
					
					
						commit
						7f241133da
					
				
					 2 changed files with 219 additions and 0 deletions
				
			
		| 
						 | 
				
			
			@ -0,0 +1,135 @@
 | 
			
		|||
# MiniCPM-Llama3-V-2_5
 | 
			
		||||
In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on MiniCPM-Llama3-V-2_5 models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [openbmb/MiniCPM-Llama3-V-2_5](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5) as a reference MiniCPM-Llama3-V-2_5 model.
 | 
			
		||||
 | 
			
		||||
## 0. Requirements
 | 
			
		||||
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
 | 
			
		||||
 | 
			
		||||
## Example: Predict Tokens using `chat()` API
 | 
			
		||||
In the example [generate.py](./generate.py), we show a basic use case for a MiniCPM-Llama3-V-2_5 model to predict the next N tokens using `chat()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.
 | 
			
		||||
### 1. Install
 | 
			
		||||
#### 1.1 Installation on Linux
 | 
			
		||||
We suggest using conda to manage environment:
 | 
			
		||||
```bash
 | 
			
		||||
conda create -n llm python=3.11
 | 
			
		||||
conda activate llm
 | 
			
		||||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
 | 
			
		||||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
 | 
			
		||||
 | 
			
		||||
pip install transformers==4.41.0 trl
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### 1.2 Installation on Windows
 | 
			
		||||
We suggest using conda to manage environment:
 | 
			
		||||
```bash
 | 
			
		||||
conda create -n llm python=3.11 libuv
 | 
			
		||||
conda activate llm
 | 
			
		||||
 | 
			
		||||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
 | 
			
		||||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
 | 
			
		||||
 | 
			
		||||
pip install transformers==4.41.0 trl
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 2. Configures OneAPI environment variables for Linux
 | 
			
		||||
 | 
			
		||||
> [!NOTE]
 | 
			
		||||
> Skip this step if you are running on Windows.
 | 
			
		||||
 | 
			
		||||
This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
source /opt/intel/oneapi/setvars.sh
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 3. Runtime Configurations
 | 
			
		||||
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
 | 
			
		||||
#### 3.1 Configurations for Linux
 | 
			
		||||
<details>
 | 
			
		||||
 | 
			
		||||
<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary>
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
export USE_XETLA=OFF
 | 
			
		||||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
 | 
			
		||||
export SYCL_CACHE_PERSISTENT=1
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
</details>
 | 
			
		||||
 | 
			
		||||
<details>
 | 
			
		||||
 | 
			
		||||
<summary>For Intel Data Center GPU Max Series</summary>
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
 | 
			
		||||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
 | 
			
		||||
export SYCL_CACHE_PERSISTENT=1
 | 
			
		||||
export ENABLE_SDP_FUSION=1
 | 
			
		||||
```
 | 
			
		||||
> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
 | 
			
		||||
</details>
 | 
			
		||||
 | 
			
		||||
<details>
 | 
			
		||||
 | 
			
		||||
<summary>For Intel iGPU</summary>
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
export SYCL_CACHE_PERSISTENT=1
 | 
			
		||||
export BIGDL_LLM_XMX_DISABLED=1
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
</details>
 | 
			
		||||
 | 
			
		||||
#### 3.2 Configurations for Windows
 | 
			
		||||
<details>
 | 
			
		||||
 | 
			
		||||
<summary>For Intel iGPU</summary>
 | 
			
		||||
 | 
			
		||||
```cmd
 | 
			
		||||
set SYCL_CACHE_PERSISTENT=1
 | 
			
		||||
set BIGDL_LLM_XMX_DISABLED=1
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
</details>
 | 
			
		||||
 | 
			
		||||
<details>
 | 
			
		||||
 | 
			
		||||
<summary>For Intel Arc™ A-Series Graphics</summary>
 | 
			
		||||
 | 
			
		||||
```cmd
 | 
			
		||||
set SYCL_CACHE_PERSISTENT=1
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
</details>
 | 
			
		||||
 | 
			
		||||
> [!NOTE]
 | 
			
		||||
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
 | 
			
		||||
### 4. Running examples
 | 
			
		||||
 | 
			
		||||
```
 | 
			
		||||
python ./generate.py --prompt 'What is in the image?'
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
Arguments info:
 | 
			
		||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the MiniCPM-Llama3-V-2_5 (e.g. `openbmb/MiniCPM-Llama3-V-2_5`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'openbmb/MiniCPM-Llama3-V-2_5'`.
 | 
			
		||||
- `--image-url-or-path IMAGE_URL_OR_PATH`: argument defining the image to be infered. It is default to be `'http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg'`.
 | 
			
		||||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is in the image?'`.
 | 
			
		||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
 | 
			
		||||
 | 
			
		||||
#### Sample Output
 | 
			
		||||
 | 
			
		||||
#### [openbmb/MiniCPM-Llama3-V-2_5](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5)
 | 
			
		||||
 | 
			
		||||
```log
 | 
			
		||||
Inference time: xxxx s
 | 
			
		||||
-------------------- Input --------------------
 | 
			
		||||
http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg
 | 
			
		||||
-------------------- Prompt --------------------
 | 
			
		||||
What is in the image?
 | 
			
		||||
-------------------- Output --------------------
 | 
			
		||||
The image features a young child holding a white teddy bear. The teddy bear is dressed in a pink outfit. The child appears to be outdoors, with a stone wall and some red flowers in the background.
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
The sample input image is (which is fetched from [COCO dataset](https://cocodataset.org/#explore?id=264959)):
 | 
			
		||||
 | 
			
		||||
<a href="http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg"><img width=400px src="http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg" ></a>
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,84 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
import os
 | 
			
		||||
import time
 | 
			
		||||
import argparse
 | 
			
		||||
import requests
 | 
			
		||||
from PIL import Image
 | 
			
		||||
from ipex_llm.transformers import AutoModel
 | 
			
		||||
from transformers import AutoTokenizer
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if __name__ == '__main__':
 | 
			
		||||
    parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for openbmb/MiniCPM-Llama3-V-2_5 model')
 | 
			
		||||
    parser.add_argument('--repo-id-or-model-path', type=str, default="openbmb/MiniCPM-Llama3-V-2_5",
 | 
			
		||||
                        help='The huggingface repo id for the openbmb/MiniCPM-Llama3-V-2_5 model to be downloaded'
 | 
			
		||||
                             ', or the path to the huggingface checkpoint folder')
 | 
			
		||||
    parser.add_argument('--image-url-or-path', type=str,
 | 
			
		||||
                        default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg',
 | 
			
		||||
                        help='The URL or path to the image to infer')
 | 
			
		||||
    parser.add_argument('--prompt', type=str, default="What is in the image?",
 | 
			
		||||
                        help='Prompt to infer')
 | 
			
		||||
    parser.add_argument('--n-predict', type=int, default=32,
 | 
			
		||||
                        help='Max tokens to predict')
 | 
			
		||||
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
    model_path = args.repo_id_or_model_path
 | 
			
		||||
    image_path = args.image_url_or_path
 | 
			
		||||
    
 | 
			
		||||
    # Load model in 4 bit,
 | 
			
		||||
    # which convert the relevant layers in the model into INT4 format
 | 
			
		||||
    # When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
 | 
			
		||||
    # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
 | 
			
		||||
    model = AutoModel.from_pretrained(model_path, 
 | 
			
		||||
                                      load_in_4bit=True,
 | 
			
		||||
                                      optimize_model=False,
 | 
			
		||||
                                      trust_remote_code=True,
 | 
			
		||||
                                      modules_to_not_convert=["vpm", "resampler"],
 | 
			
		||||
                                      use_cache=True)
 | 
			
		||||
    model = model.float().to(device='xpu')
 | 
			
		||||
    tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
			
		||||
                                              trust_remote_code=True)
 | 
			
		||||
    model.eval()
 | 
			
		||||
 | 
			
		||||
    query = args.prompt
 | 
			
		||||
    if os.path.exists(image_path):
 | 
			
		||||
       image = Image.open(image_path).convert('RGB')
 | 
			
		||||
    else:
 | 
			
		||||
       image = Image.open(requests.get(image_path, stream=True).raw).convert('RGB')
 | 
			
		||||
 | 
			
		||||
    # Generate predicted tokens
 | 
			
		||||
    # here the prompt tuning refers to https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5/blob/main/README.md
 | 
			
		||||
    msgs = [{'role': 'user', 'content': args.prompt}]
 | 
			
		||||
    st = time.time()
 | 
			
		||||
    res = model.chat(
 | 
			
		||||
     image=image,
 | 
			
		||||
     msgs=msgs,
 | 
			
		||||
     context=None,
 | 
			
		||||
     tokenizer=tokenizer,
 | 
			
		||||
     sampling=False,
 | 
			
		||||
     temperature=0.7
 | 
			
		||||
    )
 | 
			
		||||
    end = time.time()
 | 
			
		||||
    print(f'Inference time: {end-st} s')
 | 
			
		||||
    print('-'*20, 'Input', '-'*20)
 | 
			
		||||
    print(image_path)
 | 
			
		||||
    print('-'*20, 'Prompt', '-'*20)
 | 
			
		||||
    print(args.prompt)
 | 
			
		||||
    output_str = res
 | 
			
		||||
    print('-'*20, 'Output', '-'*20)
 | 
			
		||||
    print(output_str)
 | 
			
		||||
		Loading…
	
		Reference in a new issue