From 7f241133da09e0acad7797d7d2ea0b40fe8d1547 Mon Sep 17 00:00:00 2001 From: "Jin, Qiao" <89779290+JinBridger@users.noreply.github.com> Date: Tue, 6 Aug 2024 10:22:41 +0800 Subject: [PATCH] Add MiniCPM-Llama3-V-2_5 GPU example (#11693) * Add MiniCPM-Llama3-V-2_5 GPU example * fix --- .../Multimodal/MiniCPM-Llama3-V-2_5/README.md | 135 ++++++++++++++++++ .../MiniCPM-Llama3-V-2_5/generate.py | 84 +++++++++++ 2 files changed, 219 insertions(+) create mode 100644 python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-Llama3-V-2_5/README.md create mode 100644 python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-Llama3-V-2_5/generate.py diff --git a/python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-Llama3-V-2_5/README.md b/python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-Llama3-V-2_5/README.md new file mode 100644 index 00000000..8d88fbb2 --- /dev/null +++ b/python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-Llama3-V-2_5/README.md @@ -0,0 +1,135 @@ +# MiniCPM-Llama3-V-2_5 +In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on MiniCPM-Llama3-V-2_5 models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [openbmb/MiniCPM-Llama3-V-2_5](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5) as a reference MiniCPM-Llama3-V-2_5 model. + +## 0. Requirements +To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information. + +## Example: Predict Tokens using `chat()` API +In the example [generate.py](./generate.py), we show a basic use case for a MiniCPM-Llama3-V-2_5 model to predict the next N tokens using `chat()` API, with IPEX-LLM INT4 optimizations on Intel GPUs. +### 1. Install +#### 1.1 Installation on Linux +We suggest using conda to manage environment: +```bash +conda create -n llm python=3.11 +conda activate llm +# below command will install intel_extension_for_pytorch==2.1.10+xpu as default +pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ + +pip install transformers==4.41.0 trl +``` + +#### 1.2 Installation on Windows +We suggest using conda to manage environment: +```bash +conda create -n llm python=3.11 libuv +conda activate llm + +# below command will install intel_extension_for_pytorch==2.1.10+xpu as default +pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ + +pip install transformers==4.41.0 trl +``` + +### 2. Configures OneAPI environment variables for Linux + +> [!NOTE] +> Skip this step if you are running on Windows. + +This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI. + +```bash +source /opt/intel/oneapi/setvars.sh +``` + +### 3. Runtime Configurations +For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device. +#### 3.1 Configurations for Linux +
+ +For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series + +```bash +export USE_XETLA=OFF +export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 +export SYCL_CACHE_PERSISTENT=1 +``` + +
+ +
+ +For Intel Data Center GPU Max Series + +```bash +export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so +export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 +export SYCL_CACHE_PERSISTENT=1 +export ENABLE_SDP_FUSION=1 +``` +> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`. +
+ +
+ +For Intel iGPU + +```bash +export SYCL_CACHE_PERSISTENT=1 +export BIGDL_LLM_XMX_DISABLED=1 +``` + +
+ +#### 3.2 Configurations for Windows +
+ +For Intel iGPU + +```cmd +set SYCL_CACHE_PERSISTENT=1 +set BIGDL_LLM_XMX_DISABLED=1 +``` + +
+ +
+ +For Intel Arc™ A-Series Graphics + +```cmd +set SYCL_CACHE_PERSISTENT=1 +``` + +
+ +> [!NOTE] +> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile. +### 4. Running examples + +``` +python ./generate.py --prompt 'What is in the image?' +``` + +Arguments info: +- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the MiniCPM-Llama3-V-2_5 (e.g. `openbmb/MiniCPM-Llama3-V-2_5`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'openbmb/MiniCPM-Llama3-V-2_5'`. +- `--image-url-or-path IMAGE_URL_OR_PATH`: argument defining the image to be infered. It is default to be `'http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg'`. +- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is in the image?'`. +- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. + +#### Sample Output + +#### [openbmb/MiniCPM-Llama3-V-2_5](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5) + +```log +Inference time: xxxx s +-------------------- Input -------------------- +http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg +-------------------- Prompt -------------------- +What is in the image? +-------------------- Output -------------------- +The image features a young child holding a white teddy bear. The teddy bear is dressed in a pink outfit. The child appears to be outdoors, with a stone wall and some red flowers in the background. +``` + +The sample input image is (which is fetched from [COCO dataset](https://cocodataset.org/#explore?id=264959)): + + diff --git a/python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-Llama3-V-2_5/generate.py b/python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-Llama3-V-2_5/generate.py new file mode 100644 index 00000000..e1bde9ee --- /dev/null +++ b/python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-Llama3-V-2_5/generate.py @@ -0,0 +1,84 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +import os +import time +import argparse +import requests +from PIL import Image +from ipex_llm.transformers import AutoModel +from transformers import AutoTokenizer + + +if __name__ == '__main__': + parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for openbmb/MiniCPM-Llama3-V-2_5 model') + parser.add_argument('--repo-id-or-model-path', type=str, default="openbmb/MiniCPM-Llama3-V-2_5", + help='The huggingface repo id for the openbmb/MiniCPM-Llama3-V-2_5 model to be downloaded' + ', or the path to the huggingface checkpoint folder') + parser.add_argument('--image-url-or-path', type=str, + default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg', + help='The URL or path to the image to infer') + parser.add_argument('--prompt', type=str, default="What is in the image?", + help='Prompt to infer') + parser.add_argument('--n-predict', type=int, default=32, + help='Max tokens to predict') + + args = parser.parse_args() + model_path = args.repo_id_or_model_path + image_path = args.image_url_or_path + + # Load model in 4 bit, + # which convert the relevant layers in the model into INT4 format + # When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function. + # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU. + model = AutoModel.from_pretrained(model_path, + load_in_4bit=True, + optimize_model=False, + trust_remote_code=True, + modules_to_not_convert=["vpm", "resampler"], + use_cache=True) + model = model.float().to(device='xpu') + tokenizer = AutoTokenizer.from_pretrained(model_path, + trust_remote_code=True) + model.eval() + + query = args.prompt + if os.path.exists(image_path): + image = Image.open(image_path).convert('RGB') + else: + image = Image.open(requests.get(image_path, stream=True).raw).convert('RGB') + + # Generate predicted tokens + # here the prompt tuning refers to https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5/blob/main/README.md + msgs = [{'role': 'user', 'content': args.prompt}] + st = time.time() + res = model.chat( + image=image, + msgs=msgs, + context=None, + tokenizer=tokenizer, + sampling=False, + temperature=0.7 + ) + end = time.time() + print(f'Inference time: {end-st} s') + print('-'*20, 'Input', '-'*20) + print(image_path) + print('-'*20, 'Prompt', '-'*20) + print(args.prompt) + output_str = res + print('-'*20, 'Output', '-'*20) + print(output_str)