Nano: Rename strategy parameter of TorchNano to distributed_backend (#6126)
This commit is contained in:
parent
d36e7c4ff3
commit
7b28b3fd20
2 changed files with 5 additions and 5 deletions
|
|
@ -88,8 +88,8 @@ class MyNano(TorchNano):
|
|||
# enable IPEX optimizaiton
|
||||
MyNano(use_ipex=True).train(...)
|
||||
|
||||
# enable IPEX and distributed training, using subprocess strategy
|
||||
MyNano(use_ipex=True, num_processes=2, strategy="subprocess").train(...)
|
||||
# enable IPEX and distributed training, using 'subprocess' backend
|
||||
MyNano(use_ipex=True, num_processes=2, distributed_backend="subprocess").train(...)
|
||||
```
|
||||
|
||||
### Optimized Data Pipeline
|
||||
|
|
|
|||
|
|
@ -160,15 +160,15 @@ At this stage, you may already experience some speedup due to the optimized envi
|
|||
#### Increase the number of processes in distributed training to accelerate training.
|
||||
|
||||
```python
|
||||
MyNano(num_processes=2, strategy="subprocess").train()
|
||||
MyNano(num_processes=2, distributed_backend="subprocess").train()
|
||||
```
|
||||
|
||||
- Note: BigDL-Nano now support 'spawn', 'subprocess' and 'ray' strategies for distributed training, but only the 'subprocess' strategy can be used in interactive environment.
|
||||
- Note: BigDL-Nano now support 'spawn', 'subprocess' and 'ray' backends for distributed training, but only the 'subprocess' backend can be used in interactive environment.
|
||||
|
||||
#### Intel Extension for Pytorch (a.k.a. [IPEX](https://github.com/intel/intel-extension-for-pytorch))
|
||||
|
||||
IPEX extends Pytorch with optimizations on intel hardware. BigDL-Nano also integrates IPEX into the `TorchNano`, you can turn on IPEX optimization by setting `use_ipex=True`.
|
||||
|
||||
```python
|
||||
MyNano(use_ipex=True, num_processes=2, strategy="subprocess").train()
|
||||
MyNano(use_ipex=True, num_processes=2, distributed_backend="subprocess").train()
|
||||
```
|
||||
|
|
|
|||
Loading…
Reference in a new issue