diff --git a/docs/readthedocs/source/doc/Nano/Overview/pytorch_train.md b/docs/readthedocs/source/doc/Nano/Overview/pytorch_train.md index 2ccb2e0e..1a13e7bf 100644 --- a/docs/readthedocs/source/doc/Nano/Overview/pytorch_train.md +++ b/docs/readthedocs/source/doc/Nano/Overview/pytorch_train.md @@ -88,8 +88,8 @@ class MyNano(TorchNano): # enable IPEX optimizaiton MyNano(use_ipex=True).train(...) -# enable IPEX and distributed training, using subprocess strategy -MyNano(use_ipex=True, num_processes=2, strategy="subprocess").train(...) +# enable IPEX and distributed training, using 'subprocess' backend +MyNano(use_ipex=True, num_processes=2, distributed_backend="subprocess").train(...) ``` ### Optimized Data Pipeline diff --git a/docs/readthedocs/source/doc/Nano/QuickStart/pytorch_nano.md b/docs/readthedocs/source/doc/Nano/QuickStart/pytorch_nano.md index 613c9dc5..d32c1a28 100644 --- a/docs/readthedocs/source/doc/Nano/QuickStart/pytorch_nano.md +++ b/docs/readthedocs/source/doc/Nano/QuickStart/pytorch_nano.md @@ -160,15 +160,15 @@ At this stage, you may already experience some speedup due to the optimized envi #### Increase the number of processes in distributed training to accelerate training. ```python -MyNano(num_processes=2, strategy="subprocess").train() +MyNano(num_processes=2, distributed_backend="subprocess").train() ``` -- Note: BigDL-Nano now support 'spawn', 'subprocess' and 'ray' strategies for distributed training, but only the 'subprocess' strategy can be used in interactive environment. +- Note: BigDL-Nano now support 'spawn', 'subprocess' and 'ray' backends for distributed training, but only the 'subprocess' backend can be used in interactive environment. #### Intel Extension for Pytorch (a.k.a. [IPEX](https://github.com/intel/intel-extension-for-pytorch)) IPEX extends Pytorch with optimizations on intel hardware. BigDL-Nano also integrates IPEX into the `TorchNano`, you can turn on IPEX optimization by setting `use_ipex=True`. ```python -MyNano(use_ipex=True, num_processes=2, strategy="subprocess").train() +MyNano(use_ipex=True, num_processes=2, distributed_backend="subprocess").train() ```