diff --git a/python/llm/example/GPU/PyTorch-Models/Model/dolly-v1/README.md b/python/llm/example/GPU/PyTorch-Models/Model/dolly-v1/README.md new file mode 100644 index 00000000..15dd8b1e --- /dev/null +++ b/python/llm/example/GPU/PyTorch-Models/Model/dolly-v1/README.md @@ -0,0 +1,58 @@ +# Dolly v1 +In this directory, you will find examples on how you could use BigDL-LLM `optimize_model` API to accelerate Dolly v1 models. For illustration purposes, we utilize the [databricks/dolly-v1-6b](https://huggingface.co/databricks/dolly-v1-6b) as reference Dolly v1 models. + +## Requirements +To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information. + +## Example: Predict Tokens using `generate()` API +In the example [generate.py](./generate.py), we show a basic use case for a Dolly v1 model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel GPUs. +### 1. Install +We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#). + +After installing conda, create a Python environment for BigDL-LLM: +```bash +conda create -n llm python=3.9 # recommend to use Python 3.9 +conda activate llm + +# below command will install intel_extension_for_pytorch==2.0.110+xpu as default +# you can install specific ipex/torch version for your need +pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu +``` + +### 2. Configures OneAPI environment variables +```bash +source /opt/intel/oneapi/setvars.sh +``` + +### 3. Run + +For optimal performance on Arc, it is recommended to set several environment variables. + +```bash +export USE_XETLA=OFF +export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 +``` + +```bash +python ./generate.py --prompt 'What is AI?' +``` + +In the example, several arguments can be passed to satisfy your requirements: + +- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Dolly v1 model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'databricks/dolly-v1-6b'`. +- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`. +- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. + +#### 2.3 Sample Output +#### [databricks/dolly-v1-6b](https://huggingface.co/databricks/dolly-v1-6b) +```log +Inference time: xxxx s +-------------------- Output -------------------- +Below is an instruction that describes a task. Write a response that appropriately completes the request. + +### Instruction: +What is AI? + +### Response: +AI is an umbrella term for a variety of technologies that enable computers to think and act like humans. AI can be used to automate tasks, analyze data, and +``` diff --git a/python/llm/example/GPU/PyTorch-Models/Model/dolly-v1/generate.py b/python/llm/example/GPU/PyTorch-Models/Model/dolly-v1/generate.py new file mode 100644 index 00000000..6d096d06 --- /dev/null +++ b/python/llm/example/GPU/PyTorch-Models/Model/dolly-v1/generate.py @@ -0,0 +1,87 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +import torch +import intel_extension_for_pytorch as ipex +import time +import argparse + +from transformers import AutoModelForCausalLM, AutoTokenizer +from bigdl.llm import optimize_model + +# you could tune the prompt based on your own model, +# here the prompt tuning refers to https://huggingface.co/databricks/dolly-v1-6b#generate-text +DOLLY_V1_PROMPT_FORMAT = """Below is an instruction that describes a task. Write a response that appropriately completes the request. + +### Instruction: +{prompt} + +### Response: +""" + +if __name__ == '__main__': + parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Dolly v1 model') + parser.add_argument('--repo-id-or-model-path', type=str, default="databricks/dolly-v1-6b", + help='The huggingface repo id for the Dolly v1 model to be downloaded' + ', or the path to the huggingface checkpoint folder') + parser.add_argument('--prompt', type=str, default="What is AI?", + help='Prompt to infer') + parser.add_argument('--n-predict', type=int, default=32, + help='Max tokens to predict') + + args = parser.parse_args() + model_path = args.repo_id_or_model_path + + # Load model + model = AutoModelForCausalLM.from_pretrained(model_path, + trust_remote_code=True, + torch_dtype='auto', + low_cpu_mem_usage=True) + + # With only one line to enable BigDL-LLM optimization on model + model = optimize_model(model) + + model = model.to('xpu') + + # Load tokenizer + tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) + + # Generate predicted tokens + with torch.inference_mode(): + prompt = DOLLY_V1_PROMPT_FORMAT.format(prompt=args.prompt) + input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu') + end_key_token_id=tokenizer.encode("### End")[0] + # ipex model needs a warmup, then inference time can be accurate + output = model.generate(input_ids, + use_cache=True, + max_new_tokens=args.n_predict, + pad_token_id=tokenizer.pad_token_id, + eos_token_id=end_key_token_id) + + # start inference + st = time.time() + output = model.generate(input_ids, + use_cache=True, + max_new_tokens=args.n_predict, + pad_token_id=tokenizer.pad_token_id, + eos_token_id=end_key_token_id) + torch.xpu.synchronize() + end = time.time() + output = output.cpu() + output_str = tokenizer.decode(output[0], skip_special_tokens=False) + print(f'Inference time: {end-st} s') + print('-'*20, 'Output', '-'*20) + print(output_str) diff --git a/python/llm/example/GPU/PyTorch-Models/Model/dolly-v2/README.md b/python/llm/example/GPU/PyTorch-Models/Model/dolly-v2/README.md new file mode 100644 index 00000000..72fa6c1b --- /dev/null +++ b/python/llm/example/GPU/PyTorch-Models/Model/dolly-v2/README.md @@ -0,0 +1,72 @@ +# Dolly v2 +In this directory, you will find examples on how you could use BigDL-LLM `optimize_model` API to accelerate Dolly v2 models. For illustration purposes, we utilize the [databricks/dolly-v2-12b](https://huggingface.co/databricks/dolly-v2-12b) and [databricks/dolly-v2-7b](https://huggingface.co/databricks/dolly-v2-7b) as reference Dolly v2 models. + +## Requirements +To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information. + +## Example: Predict Tokens using `generate()` API +In the example [generate.py](./generate.py), we show a basic use case for a Dolly v2 model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel GPUs. +### 1. Install +We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#). + +After installing conda, create a Python environment for BigDL-LLM: +```bash +conda create -n llm python=3.9 # recommend to use Python 3.9 +conda activate llm + +# below command will install intel_extension_for_pytorch==2.0.110+xpu as default +# you can install specific ipex/torch version for your need +pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu +``` + +### 2. Configures OneAPI environment variables +```bash +source /opt/intel/oneapi/setvars.sh +``` + +### 3. Run + +For optimal performance on Arc, it is recommended to set several environment variables. + +```bash +export USE_XETLA=OFF +export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 +``` + +```bash +python ./generate.py --prompt 'What is AI?' +``` + +In the example, several arguments can be passed to satisfy your requirements: + +- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Dolly v2 model (e.g. `databricks/dolly-v2-12b` and `databricks/dolly-v2-7b`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'databricks/dolly-v2-12b'`. +- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`. +- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. + +#### 2.3 Sample Output + +#### [databricks/dolly-v2-12b](https://huggingface.co/databricks/dolly-v2-12b) +```log +Inference time: xxxx s +-------------------- Output -------------------- +Below is an instruction that describes a task. Write a response that appropriately completes the request. + +### Instruction: +What is AI? + +### Response: +Artificial Intelligence (AI) is a term generally used to describe computer systems that can perform tasks that typically require human intelligence. AI has a broad range of applications +``` + +#### [databricks/dolly-v2-7b](https://huggingface.co/databricks/dolly-v2-7b) +```log +Inference time: xxxx s +-------------------- Output -------------------- +Below is an instruction that describes a task. Write a response that appropriately completes the request. + +### Instruction: +What is AI? + +### Response: +Artificial Intelligence (AI) is a field of computer science, artificial intelligence, and robotics that focuses on understanding and mastering the principles of intelligence and making +``` diff --git a/python/llm/example/GPU/PyTorch-Models/Model/dolly-v2/generate.py b/python/llm/example/GPU/PyTorch-Models/Model/dolly-v2/generate.py new file mode 100644 index 00000000..7b787f02 --- /dev/null +++ b/python/llm/example/GPU/PyTorch-Models/Model/dolly-v2/generate.py @@ -0,0 +1,85 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +import torch +import intel_extension_for_pytorch as ipex +import time +import argparse + +from transformers import AutoModelForCausalLM, AutoTokenizer +from bigdl.llm import optimize_model + +# you could tune the prompt based on your own model, +# here the prompt tuning refers to https://huggingface.co/databricks/dolly-v2-12b/blob/main/instruct_pipeline.py#L15 +DOLLY_V2_PROMPT_FORMAT = """Below is an instruction that describes a task. Write a response that appropriately completes the request. + +### Instruction: +{prompt} + +### Response: +""" + +if __name__ == '__main__': + parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Dolly v2 model') + parser.add_argument('--repo-id-or-model-path', type=str, default="databricks/dolly-v2-12b", + help='The huggingface repo id for the Dolly v2 (e.g. `databricks/dolly-v2-7b` and `databricks/dolly-v2-12b`) to be downloaded' + ', or the path to the huggingface checkpoint folder') + parser.add_argument('--prompt', type=str, default="What is AI?", + help='Prompt to infer') + parser.add_argument('--n-predict', type=int, default=32, + help='Max tokens to predict') + + args = parser.parse_args() + model_path = args.repo_id_or_model_path + + # Load model + model = AutoModelForCausalLM.from_pretrained(model_path, + trust_remote_code=True, + torch_dtype='auto', + low_cpu_mem_usage=True) + + # With only one line to enable BigDL-LLM optimization on model + model = optimize_model(model) + + model = model.to('xpu') + + # Load tokenizer + tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) + + # Generate predicted tokens + with torch.inference_mode(): + prompt = DOLLY_V2_PROMPT_FORMAT.format(prompt=args.prompt) + input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu') + end_key_token_id=tokenizer.encode("### End")[0] + # ipex model needs a warmup, then inference time can be accurate + output = model.generate(input_ids, + max_new_tokens=args.n_predict, + pad_token_id=tokenizer.pad_token_id, + eos_token_id=end_key_token_id) + + # start inference + st = time.time() + output = model.generate(input_ids, + max_new_tokens=args.n_predict, + pad_token_id=tokenizer.pad_token_id, + eos_token_id=end_key_token_id) + torch.xpu.synchronize() + end = time.time() + output = output.cpu() + output_str = tokenizer.decode(output[0], skip_special_tokens=False) + print(f'Inference time: {end-st} s') + print('-'*20, 'Output', '-'*20) + print(output_str)