LLM: add baichuan2 example for arc (#8994)

* add baichuan2 examples

* add link

* small fix
This commit is contained in:
Ruonan Wang 2023-09-18 14:32:27 +08:00 committed by GitHub
parent 7353882732
commit cabe7c0358
4 changed files with 140 additions and 1 deletions

View file

@ -5,6 +5,7 @@ You can use BigDL-LLM to run almost every Huggingface Transformer models with IN
| Model | Example |
|------------|----------------------------------------------------------|
| Baichuan | [link](hf-transformers-models/baichuan) |
| Baichuan2 | [link](hf-transformers-models/baichuan2) |
| ChatGLM2 | [link](hf-transformers-models/chatglm2) |
| Chinese Llama2 | [link](hf-transformers-models/chinese-llama2)|
| Falcon | [link](hf-transformers-models/falcon) |

View file

@ -4,7 +4,8 @@ You can use BigDL-LLM to run almost every Huggingface Transformer models with IN
## Verified models
| Model | Example |
|------------|----------------------------------------------------------|
| Baichuan | [link](baichuan) |
| Baichuan | [link](baichuan) |
| Baichuan2 | [link](baichuan2) |
| ChatGLM2 | [link](chatglm2) |
| Chinese Llama2 | [link](chinese-llama2)|
| Falcon | [link](falcon) |

View file

@ -0,0 +1,59 @@
# Baichuan
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Baichuan2 models on [Intel GPUs](../README.md). For illustration purposes, we utilize the [baichuan-inc/Baichuan2-7B-Chat](https://huggingface.co/baichuan-inc/Baichuan-7B-Chat) as a reference Baichuan model.
## 0. Requirements
To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
## Example: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a Baichuan model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel GPUs.
### 1. Install
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.9
conda activate llm
# below command will install intel_extension_for_pytorch==2.0.110+xpu as default
# you can install specific ipex/torch version for your need
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
pip install transformers_stream_generator # additional package required for Baichuan-7B-Chat to conduct generation
```
### 2. Configures OneAPI environment variables
```bash
source /opt/intel/oneapi/setvars.sh
```
### 3. Run
For optimal performance on Arc, it is recommended to set several environment variables.
```bash
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
```
```
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
```
Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Baichuan model (e.g `baichuan-inc/Baichuan2-7B-Chat`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'baichuan-inc/Baichuan2-7B-Chat'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
#### Sample Output
#### [baichuan-inc/Baichuan2-7B-Chat](https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat)
```log
-------------------- Prompt --------------------
<human>AI是什么 <bot>
-------------------- Output --------------------
<human>AI是什么 <bot>
AI是人工智能Artificial Intelligence的缩写它是指让计算机或机器模拟、扩展和辅助人类的智能。AI技术已经广泛应用于各个领域
```
```log
Inference time: xxxx s
-------------------- Prompt --------------------
<human>What is AI? <bot>
-------------------- Output --------------------
<human>What is AI? <bot>Artificial Intelligence (AI) refers to the development of computer systems that can perform tasks that would typically require human intelligence. These tasks include learning, reasoning, problem
```

View file

@ -0,0 +1,78 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import intel_extension_for_pytorch as ipex
import time
import argparse
from bigdl.llm.transformers import AutoModelForCausalLM
from transformers import AutoTokenizer
# you could tune the prompt based on your own model,
BAICHUAN_PROMPT_FORMAT = "<human>{prompt} <bot>"
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Baichuan model')
parser.add_argument('--repo-id-or-model-path', type=str, default="baichuan-inc/Baichuan2-7B-Chat",
help='The huggingface repo id for the Baichuan model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="AI是什么",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
# if your selected model is capable of utilizing previous key/value attentions
# to enhance decoding speed, but has `"use_cache": false` in its model config,
# it is important to set `use_cache=True` explicitly in the `generate` function
# to obtain optimal performance with BigDL-LLM INT4 optimizations
model = AutoModelForCausalLM.from_pretrained(model_path,
load_in_4bit=True,
optimize_model=False,
trust_remote_code=True,
use_cache=True)
model = model.to('xpu')
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)
# Generate predicted tokens
with torch.inference_mode():
prompt = BAICHUAN_PROMPT_FORMAT.format(prompt=args.prompt)
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
# ipex model needs a warmup, then inference time can be accurate
output = model.generate(input_ids,
max_new_tokens=args.n_predict)
# start inference
st = time.time()
output = model.generate(input_ids,
max_new_tokens=args.n_predict)
torch.xpu.synchronize()
end = time.time()
output = output.cpu()
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
print(f'Inference time: {end-st} s')
print('-'*20, 'Prompt', '-'*20)
print(prompt)
print('-'*20, 'Output', '-'*20)
print(output_str)