add basic support for Baichuan-M1-14B-Instruct (#12808)
This commit is contained in:
		
							parent
							
								
									d093b75aa0
								
							
						
					
					
						commit
						73cfe293fa
					
				
					 2 changed files with 261 additions and 0 deletions
				
			
		| 
						 | 
				
			
			@ -1062,6 +1062,11 @@ def _optimize_pre(model, qtype=None):
 | 
			
		|||
        from ipex_llm.transformers.models.glm import merge_qkv, split_mlp
 | 
			
		||||
        model.apply(merge_qkv)
 | 
			
		||||
        model.apply(split_mlp)
 | 
			
		||||
    elif model.config.model_type == "baichuan_m1":
 | 
			
		||||
        from ipex_llm.transformers.models.baichuan_m1 import pre_register_inv_freq
 | 
			
		||||
        model.apply(pre_register_inv_freq)
 | 
			
		||||
    elif model.config.model_type == "multi_modality":
 | 
			
		||||
        pass
 | 
			
		||||
 | 
			
		||||
    return model
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -1994,5 +1999,21 @@ def _optimize_post(model):
 | 
			
		|||
        model.llm.config.rope_scaling = {"rope_type": "default"}
 | 
			
		||||
        _optimize_post(model.llm)
 | 
			
		||||
        model.llm.config.model_type = "megrezo"
 | 
			
		||||
    elif model.config.model_type == "baichuan_m1":
 | 
			
		||||
        modeling_module_name = model.__class__.__module__
 | 
			
		||||
        module = importlib.import_module(modeling_module_name)
 | 
			
		||||
        from ipex_llm.transformers.models.common import rms_norm_forward
 | 
			
		||||
        from ipex_llm.transformers.models.baichuan_m1 import model_forward
 | 
			
		||||
        from ipex_llm.transformers.models.baichuan_m1 import eager_attention_forward
 | 
			
		||||
        convert_forward(model, module.BaichuanModel, model_forward)
 | 
			
		||||
        convert_forward(model, module.BaichuanRMSNorm, rms_norm_forward)
 | 
			
		||||
        convert_forward(model, module.BaichuanAttention, eager_attention_forward)
 | 
			
		||||
    elif model.config.model_type == "multi_modality":
 | 
			
		||||
        # vision
 | 
			
		||||
        vpm_modeling_module_name = model.vision_model.vision_tower.__class__.__module__
 | 
			
		||||
        vpm_module = importlib.import_module(vpm_modeling_module_name)
 | 
			
		||||
 | 
			
		||||
        from ipex_llm.transformers.models.janus import vision_attention_forward
 | 
			
		||||
        convert_forward(model.vision_model, vpm_module.Attention, vision_attention_forward)
 | 
			
		||||
 | 
			
		||||
    return model
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										240
									
								
								python/llm/src/ipex_llm/transformers/models/baichuan_m1.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										240
									
								
								python/llm/src/ipex_llm/transformers/models/baichuan_m1.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,240 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
 | 
			
		||||
# This file is adapted from
 | 
			
		||||
# https://huggingface.co/baichuan-inc/Baichuan-M1-14B-Instruct/blob/main/modeling_baichuan.py
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
import math
 | 
			
		||||
import torch
 | 
			
		||||
import torch.nn.functional as F
 | 
			
		||||
 | 
			
		||||
from typing import Optional, Tuple, Union
 | 
			
		||||
from transformers.cache_utils import Cache
 | 
			
		||||
from transformers.modeling_outputs import BaseModelOutputWithPast
 | 
			
		||||
from ipex_llm.utils.common import invalidInputError
 | 
			
		||||
from ipex_llm.transformers.models.utils import should_use_fuse_rope, repeat_kv
 | 
			
		||||
from ipex_llm.transformers.models.common import attention_softmax
 | 
			
		||||
from ipex_llm.transformers.models.common import scaled_dot_product_attention
 | 
			
		||||
from ipex_llm.transformers.kv import DynamicNormalCache
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def pre_register_inv_freq(module: torch.nn.Module):
 | 
			
		||||
    if module.__class__.__name__ == "RotaryEmbedding":
 | 
			
		||||
        inv_freq = module.inv_freq
 | 
			
		||||
        del module.inv_freq
 | 
			
		||||
        module.register_buffer("inv_freq", inv_freq, persistent=False)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# copied from Baichuan M1
 | 
			
		||||
def custom_convolution(U, K):
 | 
			
		||||
    """
 | 
			
		||||
    U: Input matrix, shape (bs, seq, h, d)
 | 
			
		||||
    K: Convolution kernel, shape (w, h)
 | 
			
		||||
    Returns: Output matrix V, shape (bs, seq, h, d)
 | 
			
		||||
    """
 | 
			
		||||
    # h, w = K.shape
 | 
			
		||||
    w = K.size(-1)
 | 
			
		||||
    padding = (w - 1, 0)
 | 
			
		||||
    U_padded = F.pad(U, (0, 0, 0, 0, *padding))  # Shape becomes (bs, seq+w-1, h, d)
 | 
			
		||||
    U_unfolded = U_padded.unfold(1, w, 1)  # Shape becomes (bs, seq+w-1, h, d, w)
 | 
			
		||||
    V_unfolded = U_unfolded * K  # Shape remains (bs, seq, h, d, w)
 | 
			
		||||
    V = V_unfolded.sum(dim=-1)  # Shape becomes (bs, seq, h, d)
 | 
			
		||||
    return V
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def model_forward(
 | 
			
		||||
    self,
 | 
			
		||||
    input_ids: torch.LongTensor = None,
 | 
			
		||||
    attention_mask: Optional[torch.Tensor] = None,
 | 
			
		||||
    position_ids: Optional[torch.LongTensor] = None,
 | 
			
		||||
    seqlens: Optional[torch.LongTensor] = None,
 | 
			
		||||
    past_key_values: Optional[Cache] = None,
 | 
			
		||||
    inputs_embeds: Optional[torch.FloatTensor] = None,
 | 
			
		||||
    use_cache: Optional[bool] = None,
 | 
			
		||||
    output_attentions: Optional[bool] = None,
 | 
			
		||||
    output_hidden_states: Optional[bool] = None,
 | 
			
		||||
    return_dict: Optional[bool] = None,
 | 
			
		||||
    cache_position: Optional[torch.LongTensor] = None,
 | 
			
		||||
) -> Union[Tuple, BaseModelOutputWithPast]:
 | 
			
		||||
    output_attentions = (
 | 
			
		||||
        output_attentions if output_attentions is not None
 | 
			
		||||
        else self.config.output_attentions
 | 
			
		||||
    )
 | 
			
		||||
    output_hidden_states = (
 | 
			
		||||
        output_hidden_states if output_hidden_states is not None
 | 
			
		||||
        else self.config.output_hidden_states
 | 
			
		||||
    )
 | 
			
		||||
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
 | 
			
		||||
 | 
			
		||||
    invalidInputError((input_ids is None) ^ (inputs_embeds is None),
 | 
			
		||||
                      "You cannot specify both input_ids and inputs_embeds at the same time, "
 | 
			
		||||
                      "and must specify either one")
 | 
			
		||||
 | 
			
		||||
    if inputs_embeds is None:
 | 
			
		||||
        inputs_embeds = self.embed_tokens(input_ids)
 | 
			
		||||
 | 
			
		||||
    use_cache = use_cache if use_cache is not None else self.config.use_cache
 | 
			
		||||
    use_cache = True if inputs_embeds.device.type == "xpu" else use_cache
 | 
			
		||||
 | 
			
		||||
    # IPEX-LLM changes start: remove batch multi-pack and use ipex-llm's kv cache
 | 
			
		||||
    # kept for BC (non `Cache` `past_key_values` inputs)
 | 
			
		||||
    if use_cache and not isinstance(past_key_values, DynamicNormalCache):
 | 
			
		||||
        past_key_values = DynamicNormalCache.from_legacy_cache(past_key_values)
 | 
			
		||||
    # IPEX-LLM changes end
 | 
			
		||||
 | 
			
		||||
    if cache_position is None:
 | 
			
		||||
        past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
 | 
			
		||||
        cache_position = torch.arange(
 | 
			
		||||
            past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1],
 | 
			
		||||
            device=inputs_embeds.device
 | 
			
		||||
        )
 | 
			
		||||
    if position_ids is None:
 | 
			
		||||
        position_ids = cache_position.unsqueeze(0)
 | 
			
		||||
 | 
			
		||||
    causal_mask = self._update_causal_mask(
 | 
			
		||||
        attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    hidden_states = inputs_embeds
 | 
			
		||||
 | 
			
		||||
    # create position embeddings to be shared across the decoder layers
 | 
			
		||||
    # position_embeddings = self.rotary_emb(hidden_states, position_ids)
 | 
			
		||||
    position_embeddings = None
 | 
			
		||||
 | 
			
		||||
    # decoder layers
 | 
			
		||||
    all_hidden_states = () if output_hidden_states else None
 | 
			
		||||
    all_self_attns = () if output_attentions else None
 | 
			
		||||
    next_decoder_cache = None
 | 
			
		||||
 | 
			
		||||
    for decoder_layer in self.layers:
 | 
			
		||||
        if output_hidden_states:
 | 
			
		||||
            all_hidden_states += (hidden_states,)
 | 
			
		||||
 | 
			
		||||
        layer_outputs = decoder_layer(
 | 
			
		||||
            hidden_states,
 | 
			
		||||
            attention_mask=causal_mask,
 | 
			
		||||
            position_ids=position_ids,
 | 
			
		||||
            seqlens=None,
 | 
			
		||||
            past_key_value=past_key_values,
 | 
			
		||||
            output_attentions=output_attentions,
 | 
			
		||||
            use_cache=use_cache,
 | 
			
		||||
            cache_position=cache_position,
 | 
			
		||||
            position_embeddings=position_embeddings,
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        hidden_states = layer_outputs[0]
 | 
			
		||||
        if use_cache:
 | 
			
		||||
            next_decoder_cache = layer_outputs[2 if output_attentions else 1]
 | 
			
		||||
 | 
			
		||||
        if output_attentions:
 | 
			
		||||
            all_self_attns += (layer_outputs[1],)
 | 
			
		||||
 | 
			
		||||
    hidden_states = self.norm(hidden_states)
 | 
			
		||||
 | 
			
		||||
    # add hidden states from the last decoder layer
 | 
			
		||||
    if output_hidden_states:
 | 
			
		||||
        all_hidden_states += (hidden_states,)
 | 
			
		||||
 | 
			
		||||
    next_cache = next_decoder_cache if use_cache else None
 | 
			
		||||
    if not return_dict:
 | 
			
		||||
        return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
 | 
			
		||||
                     if v is not None)
 | 
			
		||||
    return BaseModelOutputWithPast(
 | 
			
		||||
        last_hidden_state=hidden_states,
 | 
			
		||||
        past_key_values=next_cache,
 | 
			
		||||
        hidden_states=all_hidden_states,
 | 
			
		||||
        attentions=all_self_attns,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def eager_attention_forward(
 | 
			
		||||
    self,
 | 
			
		||||
    hidden_states: torch.Tensor,
 | 
			
		||||
    attention_mask: Optional[torch.Tensor] = None,
 | 
			
		||||
    position_ids: Optional[torch.LongTensor] = None,
 | 
			
		||||
    seqlens: Optional[torch.LongTensor] = None,
 | 
			
		||||
    past_key_value: Optional[Cache] = None,
 | 
			
		||||
    output_attentions: bool = False,
 | 
			
		||||
    use_cache: bool = False,
 | 
			
		||||
    cache_position: Optional[torch.LongTensor] = None,
 | 
			
		||||
    position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]]=None,
 | 
			
		||||
):
 | 
			
		||||
    invalidInputError(seqlens is None, "`seq_lens` must be None")
 | 
			
		||||
 | 
			
		||||
    bsz, q_len, _ = hidden_states.size()
 | 
			
		||||
    qkv = self.W_pack(hidden_states)
 | 
			
		||||
    qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
 | 
			
		||||
    query_states, key_states, value_states = qkv.split([self.num_heads,
 | 
			
		||||
                                                        self.num_key_value_heads,
 | 
			
		||||
                                                        self.num_key_value_heads], dim=2)
 | 
			
		||||
    # q, k, v: [bsz, seq_len, num_heads, head_dim]
 | 
			
		||||
 | 
			
		||||
    if past_key_value is None or past_key_value.get_seq_length(self.layer_idx) == 0:    # prefill
 | 
			
		||||
        self.last_k = key_states[:, -1:]
 | 
			
		||||
        self.last_v = value_states[:, -1:]
 | 
			
		||||
 | 
			
		||||
        key_states = custom_convolution(key_states, self.conv_k)
 | 
			
		||||
        value_states = custom_convolution(value_states, self.conv_v)
 | 
			
		||||
    else:
 | 
			
		||||
        new_key_states = (self.conv_k[0, 0, :, 0, :1] * self.last_k +
 | 
			
		||||
                          self.conv_k[0, 0, :, 0, 1:] * key_states)
 | 
			
		||||
        self.last_k = key_states
 | 
			
		||||
        key_states = new_key_states
 | 
			
		||||
 | 
			
		||||
        new_value_states = (self.conv_v[0, 0, :, 0, : 1] * self.last_v +
 | 
			
		||||
                            self.conv_v[0, 0, :, 0, 1:] * value_states)
 | 
			
		||||
        self.last_v = value_states
 | 
			
		||||
        value_states = new_value_states
 | 
			
		||||
 | 
			
		||||
    query_states = query_states.transpose(1, 2)
 | 
			
		||||
    key_states = key_states.transpose(1, 2)
 | 
			
		||||
    value_states = value_states.transpose(1, 2)
 | 
			
		||||
    # q, k, v: [bsz, num_heads, seq_len, head_dim]
 | 
			
		||||
 | 
			
		||||
    invalidInputError(should_use_fuse_rope(hidden_states, position_ids, self.training),
 | 
			
		||||
                      "fuse rope must be used")
 | 
			
		||||
    import xe_addons
 | 
			
		||||
    xe_addons.rotary_half_inplaced(self.rotary_emb.inv_freq, position_ids,
 | 
			
		||||
                                   query_states, key_states)
 | 
			
		||||
 | 
			
		||||
    # ignore sliding window
 | 
			
		||||
    key_states, value_states = past_key_value.update(key_states, value_states,
 | 
			
		||||
                                                     self.layer_idx, None)
 | 
			
		||||
    if self.head_dim <= 128:
 | 
			
		||||
        attn_weights = None
 | 
			
		||||
        attn_output = scaled_dot_product_attention(
 | 
			
		||||
            query_states, key_states, value_states,
 | 
			
		||||
            attention_mask, q_len == key_states.size(2)
 | 
			
		||||
        )
 | 
			
		||||
    else:
 | 
			
		||||
        n_rep = self.num_heads // self.num_key_value_heads
 | 
			
		||||
        key_states = repeat_kv(key_states, n_rep)
 | 
			
		||||
        value_states = repeat_kv(value_states, n_rep)
 | 
			
		||||
        attn_weights = torch.matmul(query_states,
 | 
			
		||||
                                    key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
 | 
			
		||||
        if attention_mask is not None:
 | 
			
		||||
            attn_weights = attn_weights + attention_mask
 | 
			
		||||
        attn_weights = attention_softmax(attn_weights)
 | 
			
		||||
        attn_output = torch.matmul(attn_weights, value_states)
 | 
			
		||||
 | 
			
		||||
    attn_output = attn_output.transpose(1, 2).contiguous()
 | 
			
		||||
    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
 | 
			
		||||
 | 
			
		||||
    attn_output = self.o_proj(attn_output)
 | 
			
		||||
 | 
			
		||||
    if not output_attentions:
 | 
			
		||||
        attn_weights = None
 | 
			
		||||
    return attn_output, attn_weights, past_key_value
 | 
			
		||||
		Loading…
	
		Reference in a new issue