diff --git a/python/llm/src/ipex_llm/transformers/convert.py b/python/llm/src/ipex_llm/transformers/convert.py index 40bb58ed..22989304 100644 --- a/python/llm/src/ipex_llm/transformers/convert.py +++ b/python/llm/src/ipex_llm/transformers/convert.py @@ -1062,6 +1062,11 @@ def _optimize_pre(model, qtype=None): from ipex_llm.transformers.models.glm import merge_qkv, split_mlp model.apply(merge_qkv) model.apply(split_mlp) + elif model.config.model_type == "baichuan_m1": + from ipex_llm.transformers.models.baichuan_m1 import pre_register_inv_freq + model.apply(pre_register_inv_freq) + elif model.config.model_type == "multi_modality": + pass return model @@ -1994,5 +1999,21 @@ def _optimize_post(model): model.llm.config.rope_scaling = {"rope_type": "default"} _optimize_post(model.llm) model.llm.config.model_type = "megrezo" + elif model.config.model_type == "baichuan_m1": + modeling_module_name = model.__class__.__module__ + module = importlib.import_module(modeling_module_name) + from ipex_llm.transformers.models.common import rms_norm_forward + from ipex_llm.transformers.models.baichuan_m1 import model_forward + from ipex_llm.transformers.models.baichuan_m1 import eager_attention_forward + convert_forward(model, module.BaichuanModel, model_forward) + convert_forward(model, module.BaichuanRMSNorm, rms_norm_forward) + convert_forward(model, module.BaichuanAttention, eager_attention_forward) + elif model.config.model_type == "multi_modality": + # vision + vpm_modeling_module_name = model.vision_model.vision_tower.__class__.__module__ + vpm_module = importlib.import_module(vpm_modeling_module_name) + + from ipex_llm.transformers.models.janus import vision_attention_forward + convert_forward(model.vision_model, vpm_module.Attention, vision_attention_forward) return model diff --git a/python/llm/src/ipex_llm/transformers/models/baichuan_m1.py b/python/llm/src/ipex_llm/transformers/models/baichuan_m1.py new file mode 100644 index 00000000..70cb8b37 --- /dev/null +++ b/python/llm/src/ipex_llm/transformers/models/baichuan_m1.py @@ -0,0 +1,240 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# This file is adapted from +# https://huggingface.co/baichuan-inc/Baichuan-M1-14B-Instruct/blob/main/modeling_baichuan.py + + +import math +import torch +import torch.nn.functional as F + +from typing import Optional, Tuple, Union +from transformers.cache_utils import Cache +from transformers.modeling_outputs import BaseModelOutputWithPast +from ipex_llm.utils.common import invalidInputError +from ipex_llm.transformers.models.utils import should_use_fuse_rope, repeat_kv +from ipex_llm.transformers.models.common import attention_softmax +from ipex_llm.transformers.models.common import scaled_dot_product_attention +from ipex_llm.transformers.kv import DynamicNormalCache + + +def pre_register_inv_freq(module: torch.nn.Module): + if module.__class__.__name__ == "RotaryEmbedding": + inv_freq = module.inv_freq + del module.inv_freq + module.register_buffer("inv_freq", inv_freq, persistent=False) + + +# copied from Baichuan M1 +def custom_convolution(U, K): + """ + U: Input matrix, shape (bs, seq, h, d) + K: Convolution kernel, shape (w, h) + Returns: Output matrix V, shape (bs, seq, h, d) + """ + # h, w = K.shape + w = K.size(-1) + padding = (w - 1, 0) + U_padded = F.pad(U, (0, 0, 0, 0, *padding)) # Shape becomes (bs, seq+w-1, h, d) + U_unfolded = U_padded.unfold(1, w, 1) # Shape becomes (bs, seq+w-1, h, d, w) + V_unfolded = U_unfolded * K # Shape remains (bs, seq, h, d, w) + V = V_unfolded.sum(dim=-1) # Shape becomes (bs, seq, h, d) + return V + + +def model_forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + seqlens: Optional[torch.LongTensor] = None, + past_key_values: Optional[Cache] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + cache_position: Optional[torch.LongTensor] = None, +) -> Union[Tuple, BaseModelOutputWithPast]: + output_attentions = ( + output_attentions if output_attentions is not None + else self.config.output_attentions + ) + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None + else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + invalidInputError((input_ids is None) ^ (inputs_embeds is None), + "You cannot specify both input_ids and inputs_embeds at the same time, " + "and must specify either one") + + if inputs_embeds is None: + inputs_embeds = self.embed_tokens(input_ids) + + use_cache = use_cache if use_cache is not None else self.config.use_cache + use_cache = True if inputs_embeds.device.type == "xpu" else use_cache + + # IPEX-LLM changes start: remove batch multi-pack and use ipex-llm's kv cache + # kept for BC (non `Cache` `past_key_values` inputs) + if use_cache and not isinstance(past_key_values, DynamicNormalCache): + past_key_values = DynamicNormalCache.from_legacy_cache(past_key_values) + # IPEX-LLM changes end + + if cache_position is None: + past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 + cache_position = torch.arange( + past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], + device=inputs_embeds.device + ) + if position_ids is None: + position_ids = cache_position.unsqueeze(0) + + causal_mask = self._update_causal_mask( + attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions + ) + + hidden_states = inputs_embeds + + # create position embeddings to be shared across the decoder layers + # position_embeddings = self.rotary_emb(hidden_states, position_ids) + position_embeddings = None + + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + next_decoder_cache = None + + for decoder_layer in self.layers: + if output_hidden_states: + all_hidden_states += (hidden_states,) + + layer_outputs = decoder_layer( + hidden_states, + attention_mask=causal_mask, + position_ids=position_ids, + seqlens=None, + past_key_value=past_key_values, + output_attentions=output_attentions, + use_cache=use_cache, + cache_position=cache_position, + position_embeddings=position_embeddings, + ) + + hidden_states = layer_outputs[0] + if use_cache: + next_decoder_cache = layer_outputs[2 if output_attentions else 1] + + if output_attentions: + all_self_attns += (layer_outputs[1],) + + hidden_states = self.norm(hidden_states) + + # add hidden states from the last decoder layer + if output_hidden_states: + all_hidden_states += (hidden_states,) + + next_cache = next_decoder_cache if use_cache else None + if not return_dict: + return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] + if v is not None) + return BaseModelOutputWithPast( + last_hidden_state=hidden_states, + past_key_values=next_cache, + hidden_states=all_hidden_states, + attentions=all_self_attns, + ) + + +def eager_attention_forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + seqlens: Optional[torch.LongTensor] = None, + past_key_value: Optional[Cache] = None, + output_attentions: bool = False, + use_cache: bool = False, + cache_position: Optional[torch.LongTensor] = None, + position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]]=None, +): + invalidInputError(seqlens is None, "`seq_lens` must be None") + + bsz, q_len, _ = hidden_states.size() + qkv = self.W_pack(hidden_states) + qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim) + query_states, key_states, value_states = qkv.split([self.num_heads, + self.num_key_value_heads, + self.num_key_value_heads], dim=2) + # q, k, v: [bsz, seq_len, num_heads, head_dim] + + if past_key_value is None or past_key_value.get_seq_length(self.layer_idx) == 0: # prefill + self.last_k = key_states[:, -1:] + self.last_v = value_states[:, -1:] + + key_states = custom_convolution(key_states, self.conv_k) + value_states = custom_convolution(value_states, self.conv_v) + else: + new_key_states = (self.conv_k[0, 0, :, 0, :1] * self.last_k + + self.conv_k[0, 0, :, 0, 1:] * key_states) + self.last_k = key_states + key_states = new_key_states + + new_value_states = (self.conv_v[0, 0, :, 0, : 1] * self.last_v + + self.conv_v[0, 0, :, 0, 1:] * value_states) + self.last_v = value_states + value_states = new_value_states + + query_states = query_states.transpose(1, 2) + key_states = key_states.transpose(1, 2) + value_states = value_states.transpose(1, 2) + # q, k, v: [bsz, num_heads, seq_len, head_dim] + + invalidInputError(should_use_fuse_rope(hidden_states, position_ids, self.training), + "fuse rope must be used") + import xe_addons + xe_addons.rotary_half_inplaced(self.rotary_emb.inv_freq, position_ids, + query_states, key_states) + + # ignore sliding window + key_states, value_states = past_key_value.update(key_states, value_states, + self.layer_idx, None) + if self.head_dim <= 128: + attn_weights = None + attn_output = scaled_dot_product_attention( + query_states, key_states, value_states, + attention_mask, q_len == key_states.size(2) + ) + else: + n_rep = self.num_heads // self.num_key_value_heads + key_states = repeat_kv(key_states, n_rep) + value_states = repeat_kv(value_states, n_rep) + attn_weights = torch.matmul(query_states, + key_states.transpose(2, 3)) / math.sqrt(self.head_dim) + if attention_mask is not None: + attn_weights = attn_weights + attention_mask + attn_weights = attention_softmax(attn_weights) + attn_output = torch.matmul(attn_weights, value_states) + + attn_output = attn_output.transpose(1, 2).contiguous() + attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) + + attn_output = self.o_proj(attn_output) + + if not output_attentions: + attn_weights = None + return attn_output, attn_weights, past_key_value