Update Llama2 multi-processes example (#11852)

* update llama2 multi-processes examples

* update

* update readme

* update
This commit is contained in:
SONG Ge 2024-08-19 19:49:01 +08:00 committed by GitHub
parent 99b05ba1dc
commit 7380823f3f
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
2 changed files with 33 additions and 14 deletions

View file

@ -124,17 +124,27 @@ python  llama2.py
Arguments info: Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Llama2 model (i.e. `meta-llama/Llama-2-7b-chat-hf`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'meta-llama/Llama-2-7b-chat-hf'`. - `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Llama2 model (i.e. `meta-llama/Llama-2-7b-chat-hf`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'meta-llama/Llama-2-7b-chat-hf'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `What is AI?`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. - `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
- `--max-output-len MAX_OUTPUT_LEN`: Defines the maximum sequence length for both input and output tokens. It is default to be `1024`.
- `--max-prompt-len MAX_PROMPT_LEN`: Defines the maximum number of tokens that the input prompt can contain. It is default to be `768`.
#### Sample Output #### Sample Output
#### [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) #### [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)
```log ```log
Inference time: xxxx s Inference time: xxxx s
-------------------- Prompt -------------------- -------------------- Input --------------------
Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun <s><s> [INST] <<SYS>>
-------------------- Output --------------------
<s> Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun and exciting experiences.
One day, she decided to go on a journey to find a magical land that was said to be full of wonders <</SYS>>
What is AI? [/INST]
-------------------- Output --------------------
<s><s> [INST] <<SYS>>
<</SYS>>
What is AI? [/INST] AI (Artificial Intelligence) is a field of computer science and engineering that focuses on the development of intelligent machines that can perform tasks
``` ```

View file

@ -26,6 +26,18 @@ from transformers.utils import logging
logger = logging.get_logger(__name__) logger = logging.get_logger(__name__)
def get_prompt(message: str, chat_history: list[tuple[str, str]],
system_prompt: str) -> str:
texts = [f'<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n']
# The first user input is _not_ stripped
do_strip = False
for user_input, response in chat_history:
user_input = user_input.strip() if do_strip else user_input
do_strip = True
texts.append(f'{user_input} [/INST] {response.strip()} </s><s>[INST] ')
message = message.strip() if do_strip else message
texts.append(f'{message} [/INST]')
return ''.join(texts)
if __name__ == "__main__": if __name__ == "__main__":
parser = argparse.ArgumentParser( parser = argparse.ArgumentParser(
@ -38,9 +50,11 @@ if __name__ == "__main__":
help="The huggingface repo id for the Llama2 model to be downloaded" help="The huggingface repo id for the Llama2 model to be downloaded"
", or the path to the huggingface checkpoint folder", ", or the path to the huggingface checkpoint folder",
) )
parser.add_argument('--prompt', type=str, default="What is AI?",
help='Prompt to infer')
parser.add_argument("--n-predict", type=int, default=32, help="Max tokens to predict") parser.add_argument("--n-predict", type=int, default=32, help="Max tokens to predict")
parser.add_argument("--max-output-len", type=int, default=1024) parser.add_argument("--max-output-len", type=int, default=1024)
parser.add_argument("--max-prompt-len", type=int, default=128) parser.add_argument("--max-prompt-len", type=int, default=768)
parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False) parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
parser.add_argument("--intra-pp", type=int, default=2) parser.add_argument("--intra-pp", type=int, default=2)
parser.add_argument("--inter-pp", type=int, default=2) parser.add_argument("--inter-pp", type=int, default=2)
@ -64,20 +78,15 @@ if __name__ == "__main__":
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
prompts = [ DEFAULT_SYSTEM_PROMPT = """\
"Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun", """
"Once upon a time, there existed",
"Once upon a time, there existed a little girl who liked to have adventures.",
]
print("-" * 80) print("-" * 80)
print("done") print("done")
with torch.inference_mode(): with torch.inference_mode():
print("finish to load") print("finish to load")
for i in range(5): for i in range(5):
import random prompt = get_prompt(args.prompt, [], system_prompt=DEFAULT_SYSTEM_PROMPT)
idx = random.randint(0, 2)
prompt = prompts[idx]
_input_ids = tokenizer.encode(prompt, return_tensors="pt") _input_ids = tokenizer.encode(prompt, return_tensors="pt")
print("input length:", len(_input_ids[0])) print("input length:", len(_input_ids[0]))
st = time.time() st = time.time()