Support qwen2-7b with fused decoderlayer optimization on NPU (#11912)
This commit is contained in:
		
							parent
							
								
									63ac5f64bb
								
							
						
					
					
						commit
						71f03dcc39
					
				
					 3 changed files with 157 additions and 42 deletions
				
			
		| 
						 | 
				
			
			@ -81,6 +81,7 @@ The example below shows how to run the **_optimized model implementations_** on
 | 
			
		|||
- [Llama2-7B](./llama.py)
 | 
			
		||||
- [Llama3-8B](./llama.py)
 | 
			
		||||
- [Qwen2-1.5B](./qwen2.py)
 | 
			
		||||
- [Qwen2-7B](./qwen2.py)
 | 
			
		||||
- [MiniCPM-1B](./minicpm.py)
 | 
			
		||||
- [MiniCPM-2B](./minicpm.py)
 | 
			
		||||
- [Baichuan2-7B](./baichuan2.py)
 | 
			
		||||
| 
						 | 
				
			
			@ -95,6 +96,9 @@ python llama.py --repo-id-or-model-path meta-llama/Meta-Llama-3-8B-Instruct
 | 
			
		|||
# to run Qwen2-1.5B-Instruct
 | 
			
		||||
python qwen2.py
 | 
			
		||||
 | 
			
		||||
# to run Qwen2-7B-Instruct
 | 
			
		||||
python qwen2.py  --repo-id-or-model-path Qwen/Qwen2-7B-Instruct --inter-pp 4
 | 
			
		||||
 | 
			
		||||
# to run MiniCPM-1B-sft-bf16
 | 
			
		||||
python minicpm.py
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -107,12 +107,14 @@ def optimize_llm(
 | 
			
		|||
        from transformers.models.llama.modeling_llama import LlamaForCausalLM
 | 
			
		||||
        from ipex_llm.transformers.npu_models.llama_mp import llama2_casullm_forward
 | 
			
		||||
        convert_forward(model, LlamaForCausalLM, llama2_casullm_forward)
 | 
			
		||||
    elif model.config.model_type == "qwen2" and model.config.intermediate_size == 8960:
 | 
			
		||||
        # for qwen2-1.5B
 | 
			
		||||
    elif model.config.model_type == "qwen2" and model.config.num_hidden_layers == 28:
 | 
			
		||||
        # for qwen2-1.5B and qwen2-7B
 | 
			
		||||
        if intra_pp is None:
 | 
			
		||||
            intra_pp = 2
 | 
			
		||||
        if inter_pp is None:
 | 
			
		||||
            inter_pp = 1
 | 
			
		||||
            inter_pp = 4 if model.config.intermediate_size == 18944 else 1
 | 
			
		||||
        if model.config.intermediate_size == 18944:
 | 
			
		||||
            transpose_value_cache = False
 | 
			
		||||
 | 
			
		||||
        from ipex_llm.transformers.npu_models.qwen2_mp import gen_qwen2_fused_model_forward
 | 
			
		||||
        from ipex_llm.transformers.npu_models.qwen2_mp import DecodeRunner, PrefillRunner
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -199,6 +199,25 @@ class LowBitQwenMultiDecoderlayer(LLMBaseNNFactory):
 | 
			
		|||
 | 
			
		||||
        self.compile()
 | 
			
		||||
 | 
			
		||||
    def mlp(self, hidden_states):
 | 
			
		||||
        mm1 = self.linear(
 | 
			
		||||
            hidden_states, self.intermediate_size, self.hidden_size, bias=False, wt_dtype=self.dtype
 | 
			
		||||
        )
 | 
			
		||||
        mm2 = self.linear(
 | 
			
		||||
            hidden_states, self.intermediate_size, self.hidden_size, bias=False, wt_dtype=self.dtype
 | 
			
		||||
        )  # type: ignore[attr-defined]
 | 
			
		||||
        mm1 = self.eltwise_mul(self.swish(mm1), mm2)  # type: ignore[attr-defined]
 | 
			
		||||
        if self.intermediate_size == 18944:
 | 
			
		||||
            # for qwen2-7b
 | 
			
		||||
            hidden_states = self.linear(
 | 
			
		||||
                mm1, self.hidden_size, self.intermediate_size, bias=False, wt_dtype=np.int8
 | 
			
		||||
            )
 | 
			
		||||
        else:
 | 
			
		||||
            hidden_states = self.linear(
 | 
			
		||||
                mm1, self.hidden_size, self.intermediate_size, bias=False, wt_dtype=self.dtype
 | 
			
		||||
            )
 | 
			
		||||
        return hidden_states
 | 
			
		||||
 | 
			
		||||
    def build_decoder(
 | 
			
		||||
        self,
 | 
			
		||||
        hidden_states,
 | 
			
		||||
| 
						 | 
				
			
			@ -734,54 +753,67 @@ def run_prefill(
 | 
			
		|||
    input_layer_norm_weights = []
 | 
			
		||||
    post_attn_layernorm_weights = []
 | 
			
		||||
    layer_indexs = range(layer_start, layer_end)
 | 
			
		||||
    for layer_idx in layer_indexs:
 | 
			
		||||
        curr_layer = model.model.layers[layer_idx]
 | 
			
		||||
        attn_layer = curr_layer.self_attn
 | 
			
		||||
        mlp_layer = curr_layer.mlp
 | 
			
		||||
    if model.config.intermediate_size == 8960:
 | 
			
		||||
        # for qwen2-1.5b
 | 
			
		||||
        for layer_idx in layer_indexs:
 | 
			
		||||
            curr_layer = model.model.layers[layer_idx]
 | 
			
		||||
            attn_layer = curr_layer.self_attn
 | 
			
		||||
            mlp_layer = curr_layer.mlp
 | 
			
		||||
 | 
			
		||||
        weights = [
 | 
			
		||||
            (attn_layer.q_proj.weight, attn_layer.q_proj.scale),
 | 
			
		||||
            (attn_layer.k_proj.weight, attn_layer.k_proj.scale),
 | 
			
		||||
            (attn_layer.v_proj.weight, attn_layer.v_proj.scale),
 | 
			
		||||
            (attn_layer.o_proj.weight, attn_layer.o_proj.scale),
 | 
			
		||||
            (mlp_layer.gate_proj.weight, mlp_layer.gate_proj.scale),
 | 
			
		||||
            (mlp_layer.up_proj.weight, mlp_layer.up_proj.scale),
 | 
			
		||||
            (mlp_layer.down_proj.weight, mlp_layer.down_proj.scale),
 | 
			
		||||
        ]
 | 
			
		||||
            weights = [
 | 
			
		||||
                (attn_layer.q_proj.weight, attn_layer.q_proj.scale),
 | 
			
		||||
                (attn_layer.k_proj.weight, attn_layer.k_proj.scale),
 | 
			
		||||
                (attn_layer.v_proj.weight, attn_layer.v_proj.scale),
 | 
			
		||||
                (attn_layer.o_proj.weight, attn_layer.o_proj.scale),
 | 
			
		||||
                (mlp_layer.gate_proj.weight, mlp_layer.gate_proj.scale),
 | 
			
		||||
                (mlp_layer.up_proj.weight, mlp_layer.up_proj.scale),
 | 
			
		||||
                (mlp_layer.down_proj.weight, mlp_layer.down_proj.scale),
 | 
			
		||||
            ]
 | 
			
		||||
 | 
			
		||||
        cached_cos = curr_layer.self_attn.rotary_emb.cos_cached.to(torch.float16)
 | 
			
		||||
        cached_sin = curr_layer.self_attn.rotary_emb.sin_cached.to(torch.float16)
 | 
			
		||||
            cached_cos = curr_layer.self_attn.rotary_emb.cos_cached.to(torch.float16)
 | 
			
		||||
            cached_sin = curr_layer.self_attn.rotary_emb.sin_cached.to(torch.float16)
 | 
			
		||||
 | 
			
		||||
        layer_norm_0 = curr_layer.input_layernorm.weight.to(torch.float16)
 | 
			
		||||
        layer_norm_1 = curr_layer.post_attention_layernorm.weight.to(torch.float16)
 | 
			
		||||
            layer_norm_0 = curr_layer.input_layernorm.weight.to(torch.float16)
 | 
			
		||||
            layer_norm_1 = curr_layer.post_attention_layernorm.weight.to(torch.float16)
 | 
			
		||||
 | 
			
		||||
        new_decoderlayer = FusedQwenLowBitDecoderlayer(
 | 
			
		||||
            weights,
 | 
			
		||||
            num_heads=num_heads,
 | 
			
		||||
            num_key_value_heads=num_key_value_heads,
 | 
			
		||||
            cached_cos=cached_cos,
 | 
			
		||||
            cached_sin=cached_sin,
 | 
			
		||||
            layer_norm_0=layer_norm_0,
 | 
			
		||||
            layer_norm_1=layer_norm_1,
 | 
			
		||||
            q_bias=attn_layer.q_proj.bias.to(torch.float16),
 | 
			
		||||
            k_bias=attn_layer.k_proj.bias.to(torch.float16),
 | 
			
		||||
            v_bias=attn_layer.v_proj.bias.to(torch.float16),
 | 
			
		||||
            layer_idx=layer_idx,
 | 
			
		||||
            rms_norm_eps=rms_norm_eps,
 | 
			
		||||
            intermediate_size=intermediate_size,
 | 
			
		||||
            max_seq_len=max_output_len,
 | 
			
		||||
            transpose_value=transpose_value_cache,
 | 
			
		||||
        )
 | 
			
		||||
            new_decoderlayer = FusedQwenLowBitDecoderlayer(
 | 
			
		||||
                weights,
 | 
			
		||||
                num_heads=num_heads,
 | 
			
		||||
                num_key_value_heads=num_key_value_heads,
 | 
			
		||||
                cached_cos=cached_cos,
 | 
			
		||||
                cached_sin=cached_sin,
 | 
			
		||||
                layer_norm_0=layer_norm_0,
 | 
			
		||||
                layer_norm_1=layer_norm_1,
 | 
			
		||||
                q_bias=attn_layer.q_proj.bias.to(torch.float16),
 | 
			
		||||
                k_bias=attn_layer.k_proj.bias.to(torch.float16),
 | 
			
		||||
                v_bias=attn_layer.v_proj.bias.to(torch.float16),
 | 
			
		||||
                layer_idx=layer_idx,
 | 
			
		||||
                rms_norm_eps=rms_norm_eps,
 | 
			
		||||
                intermediate_size=intermediate_size,
 | 
			
		||||
                max_seq_len=max_output_len,
 | 
			
		||||
                transpose_value=transpose_value_cache,
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
        layer_weights.extend(weights)
 | 
			
		||||
        input_layer_norm_weights.append(layer_norm_0)
 | 
			
		||||
        post_attn_layernorm_weights.append(layer_norm_1)
 | 
			
		||||
        model.model.layers[layer_idx] = new_decoderlayer
 | 
			
		||||
        deocderlayers.append(new_decoderlayer)
 | 
			
		||||
            layer_weights.extend(weights)
 | 
			
		||||
            input_layer_norm_weights.append(layer_norm_0)
 | 
			
		||||
            post_attn_layernorm_weights.append(layer_norm_1)
 | 
			
		||||
            model.model.layers[layer_idx] = new_decoderlayer
 | 
			
		||||
            deocderlayers.append(new_decoderlayer)
 | 
			
		||||
 | 
			
		||||
    print("finish creating all decode layers in prefill")
 | 
			
		||||
    result_queue.put("loading finish")
 | 
			
		||||
 | 
			
		||||
    if model.config.intermediate_size == 18944:
 | 
			
		||||
        # for qwen2-7b
 | 
			
		||||
        from transformers.models.qwen2.modeling_qwen2 import Qwen2Attention
 | 
			
		||||
        from ipex_llm.transformers.npu_models.convert_mp import convert_forward
 | 
			
		||||
        qwen2_attention_forward = generate_qwen2_attention_forward(
 | 
			
		||||
            max_seq_len=max_output_len,
 | 
			
		||||
            transpose_value=transpose_value_cache
 | 
			
		||||
        )
 | 
			
		||||
        convert_forward(model, Qwen2Attention, qwen2_attention_forward)
 | 
			
		||||
        deocderlayers = model.model.layers
 | 
			
		||||
 | 
			
		||||
    while True:
 | 
			
		||||
 | 
			
		||||
        result = input_queue.get()
 | 
			
		||||
| 
						 | 
				
			
			@ -1053,3 +1085,80 @@ def qwen2_casullm_forward(
 | 
			
		|||
        hidden_states=outputs.hidden_states,
 | 
			
		||||
        attentions=outputs.attentions,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
from transformers.models.qwen2.modeling_qwen2 import apply_rotary_pos_emb, repeat_kv
 | 
			
		||||
import math
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def generate_qwen2_attention_forward(max_seq_len, transpose_value):
 | 
			
		||||
    def qwen2_attention_forward(
 | 
			
		||||
        self,
 | 
			
		||||
        hidden_states: torch.Tensor,
 | 
			
		||||
        attention_mask: Optional[torch.Tensor] = None,
 | 
			
		||||
        position_ids: Optional[torch.LongTensor] = None,
 | 
			
		||||
        past_key_value: Optional[Cache] = None,
 | 
			
		||||
        output_attentions: bool = False,
 | 
			
		||||
        use_cache: bool = False,
 | 
			
		||||
        **kwargs,
 | 
			
		||||
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
 | 
			
		||||
        bsz, q_len, _ = hidden_states.size()
 | 
			
		||||
 | 
			
		||||
        query_states = self.q_proj(hidden_states)
 | 
			
		||||
        key_states = self.k_proj(hidden_states)
 | 
			
		||||
        value_states = self.v_proj(hidden_states)
 | 
			
		||||
        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
 | 
			
		||||
        key_states = key_states.view(bsz, q_len, self.num_key_value_heads,
 | 
			
		||||
                                     self.head_dim).transpose(1, 2)
 | 
			
		||||
        value_states = value_states.view(bsz, q_len, self.num_key_value_heads,
 | 
			
		||||
                                         self.head_dim).transpose(1, 2)
 | 
			
		||||
 | 
			
		||||
        kv_seq_len = key_states.shape[-2]
 | 
			
		||||
        if past_key_value is not None:
 | 
			
		||||
            kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
 | 
			
		||||
 | 
			
		||||
        cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
 | 
			
		||||
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
 | 
			
		||||
                                                        cos, sin, position_ids)
 | 
			
		||||
 | 
			
		||||
        cache_kwargs = {"max_seq_len": max_seq_len, "transpose": transpose_value, }
 | 
			
		||||
 | 
			
		||||
        if past_key_value is not None:
 | 
			
		||||
            key_states, value_states = past_key_value.update(key_states, value_states,
 | 
			
		||||
                                                             self.layer_idx, cache_kwargs)
 | 
			
		||||
 | 
			
		||||
        key_states = repeat_kv(key_states, self.num_key_value_groups)
 | 
			
		||||
        value_states = repeat_kv(value_states, self.num_key_value_groups)
 | 
			
		||||
 | 
			
		||||
        attn_weights = None
 | 
			
		||||
        if query_states.size(2) == key_states.size(2):
 | 
			
		||||
            # first token
 | 
			
		||||
            from intel_npu_acceleration_library.functional import scaled_dot_product_attention
 | 
			
		||||
            attn_output = scaled_dot_product_attention(
 | 
			
		||||
                query_states,
 | 
			
		||||
                key_states,
 | 
			
		||||
                value_states,
 | 
			
		||||
                attn_mask=attention_mask,
 | 
			
		||||
                is_causal=q_len > 1 and bsz == 1,
 | 
			
		||||
            )
 | 
			
		||||
        else:
 | 
			
		||||
            attn_weights = torch.matmul(query_states,
 | 
			
		||||
                                        key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
 | 
			
		||||
            if attention_mask is not None:
 | 
			
		||||
                attn_weights = attn_weights + attention_mask
 | 
			
		||||
            # upcast attention to fp32
 | 
			
		||||
            attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1,
 | 
			
		||||
                                                       dtype=torch.float32).to(query_states.dtype)
 | 
			
		||||
            attn_weights = torch.nn.functional.dropout(attn_weights, p=self.attention_dropout,
 | 
			
		||||
                                                       training=self.training)
 | 
			
		||||
            attn_output = torch.matmul(attn_weights, value_states)
 | 
			
		||||
 | 
			
		||||
        attn_output = attn_output.transpose(1, 2).contiguous()
 | 
			
		||||
        attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
 | 
			
		||||
 | 
			
		||||
        attn_output = self.o_proj(attn_output)
 | 
			
		||||
 | 
			
		||||
        if not output_attentions:
 | 
			
		||||
            attn_weights = None
 | 
			
		||||
        return attn_output, attn_weights, past_key_value
 | 
			
		||||
    return qwen2_attention_forward
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue