Refactor NPU baichuan multiple-process (#11945)
* update * add baichuan mp * clean * refactor * merge * style * update * update
This commit is contained in:
		
							parent
							
								
									5ca7390082
								
							
						
					
					
						commit
						63ac5f64bb
					
				
					 1 changed files with 118 additions and 288 deletions
				
			
		| 
						 | 
				
			
			@ -48,70 +48,11 @@ from colorama import Fore, Back, Style
 | 
			
		|||
import torch.multiprocessing as mp
 | 
			
		||||
from transformers.cache_utils import Cache
 | 
			
		||||
from transformers.modeling_outputs import BaseModelOutputWithPast
 | 
			
		||||
from ipex_llm.transformers.npu_models.mp_models_base import run_model
 | 
			
		||||
from ipex_llm.transformers.npu_models.mp_models_base import LLMBaseNNFactory
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@torch.no_grad()
 | 
			
		||||
def run_model(
 | 
			
		||||
    x: Union[torch.Tensor, List[torch.Tensor]],
 | 
			
		||||
    weights: List[torch.Tensor],
 | 
			
		||||
    backend_cls: Any,
 | 
			
		||||
    op_id: str,
 | 
			
		||||
    replica: int = 1,
 | 
			
		||||
) -> torch.Tensor:
 | 
			
		||||
    global _model_cache
 | 
			
		||||
    import time
 | 
			
		||||
 | 
			
		||||
    t0 = time.perf_counter()
 | 
			
		||||
 | 
			
		||||
    # Use or not op_id depending on the class used
 | 
			
		||||
    op_kwargs = {"op_id": op_id} if op_id else {}
 | 
			
		||||
 | 
			
		||||
    if not isinstance(x, (list, tuple)):
 | 
			
		||||
        x = [x]
 | 
			
		||||
 | 
			
		||||
    # Reshape input
 | 
			
		||||
    input_dtype = x[0].dtype
 | 
			
		||||
    x_np = [set_contiguous(elem).to(torch.float16).numpy() for elem in x]
 | 
			
		||||
    op_args = []
 | 
			
		||||
    op_args_flatten = []
 | 
			
		||||
    for w in weights:
 | 
			
		||||
        if isinstance(w, tuple):  # from QuantizedLinear
 | 
			
		||||
            op_args.append((set_contiguous(w[0]).numpy(), set_contiguous(w[1]).numpy()))
 | 
			
		||||
            op_args_flatten.append(op_args[-1][0])
 | 
			
		||||
            op_args_flatten.append(op_args[-1][1])
 | 
			
		||||
        else:
 | 
			
		||||
            op_args.append(set_contiguous(w).to(torch.float16).numpy())
 | 
			
		||||
            op_args_flatten.append(op_args[-1])
 | 
			
		||||
 | 
			
		||||
    shape_dtype_signature = "_".join(
 | 
			
		||||
        ["_".join(str(dim) for dim in t.shape) + f"_{t.dtype}" for t in x_np + op_args_flatten]
 | 
			
		||||
    )
 | 
			
		||||
    key = f"{backend_cls.func.__name__}_{shape_dtype_signature}"
 | 
			
		||||
    models = _model_cache.get(key, None)
 | 
			
		||||
 | 
			
		||||
    input_shapes = [elem.shape for elem in x_np]
 | 
			
		||||
    if models is None:
 | 
			
		||||
        _model_cache[key] = deque([backend_cls(*input_shapes) for i in range(replica)])
 | 
			
		||||
    elif len(models) < 1:
 | 
			
		||||
        _model_cache[key].append(backend_cls(*input_shapes))
 | 
			
		||||
    else:
 | 
			
		||||
        _model_cache[key].rotate(1)
 | 
			
		||||
 | 
			
		||||
    # Get the model
 | 
			
		||||
    model = _model_cache[key][0]
 | 
			
		||||
 | 
			
		||||
    with record_function(f"npu_factory_mul_{key}"):
 | 
			
		||||
        ret = model.run(x_np, *op_args, **op_kwargs)
 | 
			
		||||
 | 
			
		||||
    if isinstance(ret, list):
 | 
			
		||||
        results = [adapt_output_tensor(r, r.shape, input_dtype) for r in ret]
 | 
			
		||||
    else:
 | 
			
		||||
        results = adapt_output_tensor(ret, ret.shape, input_dtype)
 | 
			
		||||
 | 
			
		||||
    return results
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class LowBitLlamaMultiDecoderlayer(NNFactory):
 | 
			
		||||
class LowBitBaichuanMultiDecoderlayer(LLMBaseNNFactory):
 | 
			
		||||
    def __init__(
 | 
			
		||||
        self,
 | 
			
		||||
        # batch_size: int,
 | 
			
		||||
| 
						 | 
				
			
			@ -135,7 +76,11 @@ class LowBitLlamaMultiDecoderlayer(NNFactory):
 | 
			
		|||
        rms_norm_eps,
 | 
			
		||||
        intermediate_size,
 | 
			
		||||
    ):
 | 
			
		||||
        super().__init__(profile, device)
 | 
			
		||||
        super().__init__(max_seq_len=max_seq_len,
 | 
			
		||||
                         transpose_value=transpose_value,
 | 
			
		||||
                         dtype=dtype,
 | 
			
		||||
                         profile=profile,
 | 
			
		||||
                         device=device)
 | 
			
		||||
        self.max_seq_len = max_seq_len
 | 
			
		||||
        self.intermediate_size = intermediate_size
 | 
			
		||||
        self.dtype = dtype
 | 
			
		||||
| 
						 | 
				
			
			@ -145,6 +90,7 @@ class LowBitLlamaMultiDecoderlayer(NNFactory):
 | 
			
		|||
        self.mode = mode
 | 
			
		||||
        self.rms_norm_eps = rms_norm_eps
 | 
			
		||||
        self.transpose_value = transpose_value
 | 
			
		||||
        self.num_layers = num_layers
 | 
			
		||||
 | 
			
		||||
        cos = self.constant(self.cached_cos)
 | 
			
		||||
        self.cos = self.unsqueeze(cos, axis=0)
 | 
			
		||||
| 
						 | 
				
			
			@ -158,34 +104,33 @@ class LowBitLlamaMultiDecoderlayer(NNFactory):
 | 
			
		|||
            self.kv_seq_len = self.seq_len
 | 
			
		||||
 | 
			
		||||
        self.num_heads = num_heads
 | 
			
		||||
        # self.num_key_value_heads = num_key_value_heads
 | 
			
		||||
 | 
			
		||||
        self.head_dim = self.hidden_size // self.num_heads
 | 
			
		||||
        # self.num_key_value_groups = self.num_heads // self.num_key_value_heads
 | 
			
		||||
 | 
			
		||||
        # define input, the order self.parameter matters
 | 
			
		||||
        input = self.parameter((self.batch_size, self.seq_len, self.hidden_size))
 | 
			
		||||
        input = self.create_input_op((self.batch_size, self.seq_len, self.hidden_size))
 | 
			
		||||
 | 
			
		||||
        # Self Attention
 | 
			
		||||
        if mode == "decode":
 | 
			
		||||
            attention_mask = self.parameter((self.batch_size, 1, 1, self.max_seq_len + 1))
 | 
			
		||||
            attention_mask = self.create_input_op((self.batch_size, 1, 1, self.max_seq_len + 1))
 | 
			
		||||
        else:
 | 
			
		||||
            attention_mask = self.parameter((self.batch_size, 1, self.seq_len, self.seq_len))
 | 
			
		||||
            attention_mask = self.create_input_op((self.batch_size, 1, self.seq_len, self.seq_len))
 | 
			
		||||
 | 
			
		||||
        position_ids = self.parameter((self.batch_size, self.seq_len))
 | 
			
		||||
        position_ids = self.create_input_op((self.batch_size, self.seq_len))
 | 
			
		||||
        # self.num_key_value_heads = num_key_value_heads
 | 
			
		||||
        past_keys = []
 | 
			
		||||
        past_values = []
 | 
			
		||||
        if mode == "decode":
 | 
			
		||||
            for i in range(num_layers):
 | 
			
		||||
                past_key = self.parameter(
 | 
			
		||||
                past_key = self.create_cache_op(
 | 
			
		||||
                    (self.batch_size, self.num_heads, self.max_seq_len, self.head_dim)
 | 
			
		||||
                )
 | 
			
		||||
                if transpose_value:
 | 
			
		||||
                    past_value = self.parameter(
 | 
			
		||||
                    past_value = self.create_cache_op(
 | 
			
		||||
                        (self.batch_size, self.num_heads, self.head_dim, self.max_seq_len)
 | 
			
		||||
                    )
 | 
			
		||||
                else:
 | 
			
		||||
                    past_value = self.parameter(
 | 
			
		||||
                    past_value = self.create_cache_op(
 | 
			
		||||
                        (self.batch_size, self.num_heads, self.max_seq_len, self.head_dim)
 | 
			
		||||
                    )
 | 
			
		||||
                past_keys.append(past_key)
 | 
			
		||||
| 
						 | 
				
			
			@ -199,7 +144,7 @@ class LowBitLlamaMultiDecoderlayer(NNFactory):
 | 
			
		|||
            post_attn_layernorm_weights = []
 | 
			
		||||
            for i in range(num_layers):
 | 
			
		||||
                input_layernorm_weights.append(
 | 
			
		||||
                    self.parameter(
 | 
			
		||||
                    self.create_input_op(
 | 
			
		||||
                        (
 | 
			
		||||
                            1,
 | 
			
		||||
                            self.hidden_size,
 | 
			
		||||
| 
						 | 
				
			
			@ -207,7 +152,7 @@ class LowBitLlamaMultiDecoderlayer(NNFactory):
 | 
			
		|||
                    )
 | 
			
		||||
                )
 | 
			
		||||
                post_attn_layernorm_weights.append(
 | 
			
		||||
                    self.parameter(
 | 
			
		||||
                    self.create_input_op(
 | 
			
		||||
                        (
 | 
			
		||||
                            1,
 | 
			
		||||
                            self.hidden_size,
 | 
			
		||||
| 
						 | 
				
			
			@ -243,63 +188,56 @@ class LowBitLlamaMultiDecoderlayer(NNFactory):
 | 
			
		|||
        print("start compiling")
 | 
			
		||||
        self.compile()
 | 
			
		||||
 | 
			
		||||
    def build_decoder(
 | 
			
		||||
        self,
 | 
			
		||||
        hidden_states,
 | 
			
		||||
        attention_mask,
 | 
			
		||||
        position_ids,
 | 
			
		||||
        input_layernorm_weight,
 | 
			
		||||
        post_attention_layernorm_weight,
 | 
			
		||||
        past_key=None,
 | 
			
		||||
        past_value=None,
 | 
			
		||||
    ):
 | 
			
		||||
 | 
			
		||||
        residual = hidden_states
 | 
			
		||||
 | 
			
		||||
        input_2d = self.reshape(hidden_states, (self.batch_size * self.seq_len, self.hidden_size))
 | 
			
		||||
 | 
			
		||||
        # input layernorm
 | 
			
		||||
        input_2d = self.convert_to_fp32(input_2d)
 | 
			
		||||
        variance = self.reduce_mean(
 | 
			
		||||
            self.power(input_2d, self.constant(np.array([[2]], dtype=np.float32))),
 | 
			
		||||
            -1,
 | 
			
		||||
            keep_dims=True,
 | 
			
		||||
    def attention(self,
 | 
			
		||||
                  *,
 | 
			
		||||
                  hidden_states,
 | 
			
		||||
                  position_ids,
 | 
			
		||||
                  attention_mask,
 | 
			
		||||
                  past_key,
 | 
			
		||||
                  past_value,
 | 
			
		||||
                  cos,
 | 
			
		||||
                  sin,
 | 
			
		||||
                  mode,
 | 
			
		||||
                  num_heads,
 | 
			
		||||
                  head_dim,
 | 
			
		||||
                  seq_len,
 | 
			
		||||
                  q_bias=None,
 | 
			
		||||
                  k_bias=None,
 | 
			
		||||
                  v_bias=None):
 | 
			
		||||
        hidden_size = num_heads * head_dim
 | 
			
		||||
        proj = self.linear(
 | 
			
		||||
            hidden_states,
 | 
			
		||||
            3 * hidden_size,
 | 
			
		||||
            hidden_size,
 | 
			
		||||
            bias=False,
 | 
			
		||||
            wt_dtype=self.dtype
 | 
			
		||||
        )
 | 
			
		||||
        eps = self.constant(self.rms_norm_eps)
 | 
			
		||||
        input_2d = self.eltwise_div(input_2d, self.sqrt(self.eltwise_add(variance, eps)))
 | 
			
		||||
        input_layernorm_weight = self.convert_to_fp32(input_layernorm_weight)
 | 
			
		||||
        input_2d = self.eltwise_mul(input_layernorm_weight, input_2d)
 | 
			
		||||
        input_2d = self.convert_to_fp16(input_2d)
 | 
			
		||||
 | 
			
		||||
        # attention
 | 
			
		||||
        proj = self.linear(input_2d, 3 * self.hidden_size,
 | 
			
		||||
                           self.hidden_size, bias=False, wt_dtype=self.dtype)
 | 
			
		||||
        # proj = proj.unflatten(-1, (3, self.hidden_size)).unsqueeze(0).transpose(0, -2).squeeze(-2)
 | 
			
		||||
        proj = self.reshape(proj, [-1, 3, self.hidden_size])  # b*s, 3, h
 | 
			
		||||
        proj = self.reshape(proj, [-1, 3, hidden_size])  # b*s, 3, h
 | 
			
		||||
        proj = self.unsqueeze(proj, [0])  # b, s, 3, h
 | 
			
		||||
        proj = self.transpose(proj, [2, 1, 0, 3])  # 3, s, b, h
 | 
			
		||||
        proj = self.squeeze(proj)  # 3, b*s, h
 | 
			
		||||
        proj = self.unsqueeze(proj, [1])
 | 
			
		||||
        # query_states = proj[0].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
 | 
			
		||||
        query_states = self.reshape(proj[0, ...], [self.batch_size,
 | 
			
		||||
                                                   self.seq_len, self.num_heads, self.head_dim])
 | 
			
		||||
        query_states = self.reshape(proj[0, ...], [1, self.seq_len, num_heads, head_dim])
 | 
			
		||||
        query_states = self.transpose(query_states, [0, 2, 1, 3])
 | 
			
		||||
        # key_states = proj[1].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
 | 
			
		||||
        key_states = self.reshape(proj[1, ...], [self.batch_size,
 | 
			
		||||
                                                 self.seq_len, self.num_heads, self.head_dim])
 | 
			
		||||
        key_states = self.reshape(proj[1, ...], [1, self.seq_len, num_heads, head_dim])
 | 
			
		||||
        key_states = self.transpose(key_states, [0, 2, 1, 3])
 | 
			
		||||
        # value_states = proj[2].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
 | 
			
		||||
        value_states = self.reshape(proj[2, ...], [self.batch_size,
 | 
			
		||||
                                                   self.seq_len, self.num_heads, self.head_dim])
 | 
			
		||||
        value_states = self.reshape(proj[2, ...], [1, self.seq_len, num_heads, head_dim])
 | 
			
		||||
        if self.transpose_value:
 | 
			
		||||
            value_states = self.transpose(value_states, [0, 2, 3, 1])
 | 
			
		||||
        else:
 | 
			
		||||
            value_states = self.transpose(value_states, [0, 2, 1, 3])
 | 
			
		||||
 | 
			
		||||
        cos = self.unsqueeze(self.squeeze(self.cos), [0])
 | 
			
		||||
        sin = self.unsqueeze(self.squeeze(self.sin), [0])
 | 
			
		||||
        cos = self.unsqueeze(self.squeeze(cos), [0])
 | 
			
		||||
        sin = self.unsqueeze(self.squeeze(sin), [0])
 | 
			
		||||
 | 
			
		||||
        query_states, key_states = self.apply_rotary_pos_emb(
 | 
			
		||||
            query_states, key_states, cos, sin, position_ids
 | 
			
		||||
            q=query_states,
 | 
			
		||||
            k=key_states,
 | 
			
		||||
            cos=cos,
 | 
			
		||||
            sin=sin,
 | 
			
		||||
            position_ids=position_ids,
 | 
			
		||||
            num_heads=num_heads,
 | 
			
		||||
            seq_len=seq_len,
 | 
			
		||||
            head_dim=head_dim,
 | 
			
		||||
        )
 | 
			
		||||
        new_key_states = key_states
 | 
			
		||||
        new_value_states = value_states
 | 
			
		||||
| 
						 | 
				
			
			@ -320,95 +258,55 @@ class LowBitLlamaMultiDecoderlayer(NNFactory):
 | 
			
		|||
        attn_output = self.matmul(attn_weight, value_states, False, self.transpose_value)
 | 
			
		||||
 | 
			
		||||
        attn_output = self.transpose(attn_output, [0, 2, 1, 3])
 | 
			
		||||
        attn_output = self.reshape(attn_output, [self.batch_size, self.seq_len, self.hidden_size])
 | 
			
		||||
        attn_output = self.reshape(attn_output, [1, seq_len, hidden_size])
 | 
			
		||||
 | 
			
		||||
        attn_output = self.linear(
 | 
			
		||||
            attn_output, self.hidden_size, self.hidden_size, bias=False, wt_dtype=self.dtype
 | 
			
		||||
            attn_output, hidden_size, hidden_size, bias=False, wt_dtype=self.dtype
 | 
			
		||||
        )
 | 
			
		||||
        return attn_output, new_key_states, new_value_states
 | 
			
		||||
 | 
			
		||||
    def build_decoder(
 | 
			
		||||
        self,
 | 
			
		||||
        hidden_states,
 | 
			
		||||
        attention_mask,
 | 
			
		||||
        position_ids,
 | 
			
		||||
        input_layernorm_weight,
 | 
			
		||||
        post_attention_layernorm_weight,
 | 
			
		||||
        past_key=None,
 | 
			
		||||
        past_value=None,
 | 
			
		||||
    ):
 | 
			
		||||
 | 
			
		||||
        residual = hidden_states
 | 
			
		||||
 | 
			
		||||
        input_2d = self.reshape(hidden_states, (self.batch_size * self.seq_len, self.hidden_size))
 | 
			
		||||
        input_2d = self.layer_norm(input_2d, input_layernorm_weight)
 | 
			
		||||
 | 
			
		||||
        # attention
 | 
			
		||||
        attn_output, new_key_states, new_value_states = self.attention(
 | 
			
		||||
            hidden_states=input_2d,
 | 
			
		||||
            position_ids=position_ids,
 | 
			
		||||
            attention_mask=attention_mask,
 | 
			
		||||
            past_key=past_key,
 | 
			
		||||
            past_value=past_value,
 | 
			
		||||
            cos=self.cos,
 | 
			
		||||
            sin=self.sin,
 | 
			
		||||
            mode=self.mode,
 | 
			
		||||
            num_heads=self.num_heads,
 | 
			
		||||
            head_dim=self.head_dim,
 | 
			
		||||
            seq_len=self.seq_len,
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        hidden_states = self.eltwise_add(residual, attn_output)
 | 
			
		||||
 | 
			
		||||
        # Fully Connected
 | 
			
		||||
        residual = hidden_states
 | 
			
		||||
        # post_attention_layernorm forward
 | 
			
		||||
 | 
			
		||||
        hidden_states = self.convert_to_fp32(hidden_states)
 | 
			
		||||
        variance = self.reduce_mean(
 | 
			
		||||
            self.power(hidden_states, self.constant(np.array([[[2]]], dtype=np.float32))),
 | 
			
		||||
            -1,
 | 
			
		||||
            keep_dims=True,
 | 
			
		||||
        )
 | 
			
		||||
        hidden_states = self.eltwise_div(hidden_states, self.sqrt(self.eltwise_add(variance, eps)))
 | 
			
		||||
        post_attention_layernorm_weight = self.convert_to_fp32(post_attention_layernorm_weight)
 | 
			
		||||
        hidden_states = self.eltwise_mul(post_attention_layernorm_weight, hidden_states)
 | 
			
		||||
        hidden_states = self.convert_to_fp16(hidden_states)
 | 
			
		||||
 | 
			
		||||
        # mlp
 | 
			
		||||
        # gate proj
 | 
			
		||||
        mm1 = self.linear(hidden_states, self.intermediate_size, self.hidden_size,
 | 
			
		||||
                          bias=False, wt_dtype=self.dtype)
 | 
			
		||||
        # up proj
 | 
			
		||||
        mm2 = self.linear(hidden_states, self.intermediate_size, self.hidden_size,
 | 
			
		||||
                          bias=False, wt_dtype=self.dtype)  # type: ignore[attr-defined]
 | 
			
		||||
        mm1 = self.eltwise_mul(self.swish(mm1), mm2)  # type: ignore[attr-defined]
 | 
			
		||||
        # down proj
 | 
			
		||||
        hidden_states = self.linear(mm1, self.hidden_size,
 | 
			
		||||
                                    self.intermediate_size, bias=False, wt_dtype=self.dtype)
 | 
			
		||||
 | 
			
		||||
        hidden_states = self.layer_norm(hidden_states, post_attention_layernorm_weight)
 | 
			
		||||
        hidden_states = self.mlp(hidden_states)
 | 
			
		||||
        hidden_states = self.eltwise_add(residual, hidden_states)
 | 
			
		||||
        hidden_states = self.convert_to_fp16(hidden_states)
 | 
			
		||||
 | 
			
		||||
        return hidden_states, new_key_states, new_value_states
 | 
			
		||||
 | 
			
		||||
    def rotate_half(self, x):
 | 
			
		||||
        x1 = self.slice(
 | 
			
		||||
            x,
 | 
			
		||||
            [0, 0, 0, 0],
 | 
			
		||||
            [self.batch_size, self.num_heads, self.seq_len, self.head_dim // 2],
 | 
			
		||||
        )
 | 
			
		||||
        x2 = self.slice(
 | 
			
		||||
            x,
 | 
			
		||||
            [0, 0, 0, self.head_dim // 2],
 | 
			
		||||
            [self.batch_size, self.num_heads, self.seq_len, self.head_dim],
 | 
			
		||||
        )
 | 
			
		||||
        return self.concat(self.negative(x2), x1, axis=-1)
 | 
			
		||||
 | 
			
		||||
    def apply_rotary_pos_emb2(self, q, k, cos, sin, position_ids):
 | 
			
		||||
 | 
			
		||||
        cos = self.squeeze(cos)  # [seq_len, dim]
 | 
			
		||||
        sin = self.squeeze(sin)  # [seq_len, dim]
 | 
			
		||||
        # cos = cos[position_ids]
 | 
			
		||||
        cos = self.unsqueeze(cos, [0, 1])  # [bs, 1, seq_len, dim]
 | 
			
		||||
        # sin = sin[position_ids]
 | 
			
		||||
        sin = self.unsqueeze(sin, [0, 1])  # [bs, 1, seq_len, dim]
 | 
			
		||||
 | 
			
		||||
        q_embed = self.eltwise_add(
 | 
			
		||||
            self.eltwise_mul(q, cos), self.eltwise_mul(self.rotate_half(q), sin)
 | 
			
		||||
        )
 | 
			
		||||
        k_embed = self.eltwise_add(
 | 
			
		||||
            self.eltwise_mul(k, cos), self.eltwise_mul(self.rotate_half(k), sin)
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        return q_embed, k_embed
 | 
			
		||||
 | 
			
		||||
    def apply_rotary_pos_emb(self, q, k, cos, sin, position_ids):
 | 
			
		||||
        position_ids = self.squeeze(position_ids)
 | 
			
		||||
        cos = self.gather(cos, self.convert_to_int32(position_ids), self.constant(1), 0)
 | 
			
		||||
        sin = self.gather(sin, self.convert_to_int32(position_ids), self.constant(1), 0)
 | 
			
		||||
        cos = self.unsqueeze(cos, [1])
 | 
			
		||||
        sin = self.unsqueeze(sin, [1])
 | 
			
		||||
 | 
			
		||||
        q_embed = self.eltwise_add(
 | 
			
		||||
            self.eltwise_mul(q, cos), self.eltwise_mul(self.rotate_half(q), sin)
 | 
			
		||||
        )
 | 
			
		||||
        k_embed = self.eltwise_add(
 | 
			
		||||
            self.eltwise_mul(k, cos), self.eltwise_mul(self.rotate_half(k), sin)
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        return q_embed, k_embed
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
 | 
			
		||||
class FusedBaichuanLowBitMultiDecoderlayer(torch.nn.Module):
 | 
			
		||||
 | 
			
		||||
    def __init__(
 | 
			
		||||
        self,
 | 
			
		||||
| 
						 | 
				
			
			@ -449,8 +347,6 @@ class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
 | 
			
		|||
 | 
			
		||||
        self.intra_stages = intra_stages
 | 
			
		||||
        self.layer_indexes = layer_indexes
 | 
			
		||||
        self.num_layers_1 = len(self.layer_indexes) // 2
 | 
			
		||||
        self.num_layers_0 = len(self.layer_indexes) - self.num_layers_1
 | 
			
		||||
        num_layers = len(self.layer_indexes) // intra_stages
 | 
			
		||||
        self.layer_ranges = []
 | 
			
		||||
        for i in range(intra_stages):
 | 
			
		||||
| 
						 | 
				
			
			@ -465,7 +361,7 @@ class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
 | 
			
		|||
            start, end = self.layer_ranges[i]
 | 
			
		||||
            lm_0 = input_laynorm_weights[start:end]
 | 
			
		||||
            lm_1 = post_attn_layernorm_weights[start:end]
 | 
			
		||||
            decoder = LowBitLlamaMultiDecoderlayer(
 | 
			
		||||
            decoder = LowBitBaichuanMultiDecoderlayer(
 | 
			
		||||
                [1, 1, num_heads * head_dim],
 | 
			
		||||
                input_layernorm_weights=lm_0,
 | 
			
		||||
                post_attn_layernorm_weights=lm_1,
 | 
			
		||||
| 
						 | 
				
			
			@ -485,16 +381,7 @@ class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
 | 
			
		|||
 | 
			
		||||
        for i in range(intra_stages):
 | 
			
		||||
            start, end = self.layer_ranges[i]
 | 
			
		||||
            num_intra_layers = end - start
 | 
			
		||||
            self.backend_decoders[i].setWeights(
 | 
			
		||||
                3 + (num_intra_layers) * 2, self.op_id, *op_parameters[start * 5:end * 5]
 | 
			
		||||
            )
 | 
			
		||||
            with FileLock(f"decoder_run.lock"):
 | 
			
		||||
                backend_lib.run(self.backend_decoders[i]._mm)
 | 
			
		||||
 | 
			
		||||
        self.kv_cache_c_parameter_handel = []
 | 
			
		||||
        self.kv_cache_parameters = []
 | 
			
		||||
        self.kv_cache_prefetched = False
 | 
			
		||||
            self.backend_decoders[i].set_weights(self.op_id, op_parameters[start * 5:end * 5])
 | 
			
		||||
 | 
			
		||||
    def forward(
 | 
			
		||||
        self,
 | 
			
		||||
| 
						 | 
				
			
			@ -512,102 +399,45 @@ class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
 | 
			
		|||
            position_ids,
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        if len(self.kv_cache_parameters) > 0:
 | 
			
		||||
            # the case kv cache changed
 | 
			
		||||
            cached_prt = self.kv_cache_parameters[0].storage().data_ptr()
 | 
			
		||||
            current_ptr = past_key_value.key_cache[self.layer_indexes[0]].storage().data_ptr()
 | 
			
		||||
            if cached_prt != current_ptr:
 | 
			
		||||
                self.kv_cache_parameters = []
 | 
			
		||||
                self.kv_cache_c_parameter_handel = []
 | 
			
		||||
                self.kv_cache_prefetched = False
 | 
			
		||||
        for i in range(self.intra_stages):
 | 
			
		||||
            start, end = self.layer_ranges[i]
 | 
			
		||||
            self.backend_decoders[i].update_cache(past_key_value, self.layer_indexes[start:end])
 | 
			
		||||
 | 
			
		||||
        if len(self.kv_cache_parameters) == 0:
 | 
			
		||||
            for idx in self.layer_indexes:
 | 
			
		||||
                past_key = past_key_value.key_cache[idx]
 | 
			
		||||
                past_value = past_key_value.value_cache[idx]
 | 
			
		||||
 | 
			
		||||
                invalidInputError(
 | 
			
		||||
                    past_key.dtype == torch.float16, f"past_key dtype is {past_key.dtype}"
 | 
			
		||||
                )
 | 
			
		||||
 | 
			
		||||
                new_size = (past_key.size(0), past_key.size(1), self.max_seq_len, past_key.size(3))
 | 
			
		||||
                past_key = past_key.as_strided(new_size, past_key.stride(), storage_offset=0)
 | 
			
		||||
                invalidInputError(past_key.is_contiguous(), "past_key is not contiguous")
 | 
			
		||||
                past_value = past_value.as_strided(new_size, past_value.stride(), storage_offset=0)
 | 
			
		||||
                if self.transpose_value:
 | 
			
		||||
                    past_value = past_value.transpose(-1, -2)
 | 
			
		||||
                invalidInputError(past_value.is_contiguous(), "past_value is not contiguous")
 | 
			
		||||
 | 
			
		||||
                self.kv_cache_parameters.append(past_key)
 | 
			
		||||
                self.kv_cache_parameters.append(past_value)
 | 
			
		||||
 | 
			
		||||
            for i in range(self.intra_stages):
 | 
			
		||||
                start, end = self.layer_ranges[i]
 | 
			
		||||
                layer_kv_cache = self.kv_cache_parameters[start * 2:end * 2]
 | 
			
		||||
                layer_kv_cache = [p.numpy() for p in layer_kv_cache]
 | 
			
		||||
                handle = self.backend_decoders[i].create_parameters(layer_kv_cache)
 | 
			
		||||
                self.kv_cache_c_parameter_handel.append(handle)
 | 
			
		||||
 | 
			
		||||
        x_np = [elem.to(torch.float16).numpy() for elem in inputs]
 | 
			
		||||
 | 
			
		||||
        with record_function(f"npu_factory"):
 | 
			
		||||
            if not self.kv_cache_prefetched:
 | 
			
		||||
                for i in range(self.intra_stages):
 | 
			
		||||
                    self.backend_decoders[i].load_wt_fn(
 | 
			
		||||
                        len(inputs),
 | 
			
		||||
                        self.backend_decoders[i]._mm,
 | 
			
		||||
                        self.kv_cache_c_parameter_handel[i],
 | 
			
		||||
                    )
 | 
			
		||||
 | 
			
		||||
            array_type = ctypes.POINTER(ctypes.c_char) * self.intra_stages
 | 
			
		||||
            models_ptr = array_type(
 | 
			
		||||
                *[self.backend_decoders[i]._mm for i in range(self.intra_stages)]
 | 
			
		||||
            )
 | 
			
		||||
            inputs_ptr = (ctypes.c_void_p * 3)(
 | 
			
		||||
                x_np[0].ctypes.data_as(ctypes.c_void_p),
 | 
			
		||||
                x_np[1].ctypes.data_as(ctypes.c_void_p),
 | 
			
		||||
                x_np[2].ctypes.data_as(ctypes.c_void_p),
 | 
			
		||||
            )
 | 
			
		||||
            t0 = time.perf_counter()
 | 
			
		||||
            backend_lib.run_decoders(models_ptr, inputs_ptr, self.intra_stages, 3)
 | 
			
		||||
            t1 = time.perf_counter()
 | 
			
		||||
 | 
			
		||||
        hidden_states = self.backend_decoders[-1].torch_out[0]
 | 
			
		||||
        hidden_states, new_keys, new_values = LowBitBaichuanMultiDecoderlayer.run_decoders(
 | 
			
		||||
            inputs,
 | 
			
		||||
            decoders=self.backend_decoders)
 | 
			
		||||
 | 
			
		||||
        if self.do_print:
 | 
			
		||||
            print("outputs:", hidden_states)
 | 
			
		||||
 | 
			
		||||
        outputs = (hidden_states,)
 | 
			
		||||
        outputs += (past_key_value,)
 | 
			
		||||
        return outputs, t1 - t0
 | 
			
		||||
        outputs += (past_key_value, new_keys, new_values)
 | 
			
		||||
        return outputs
 | 
			
		||||
 | 
			
		||||
    def post_forward(self, past_key_value):
 | 
			
		||||
    def post_forward(self, past_key_value, new_keys, new_values):
 | 
			
		||||
        key_value_states = []
 | 
			
		||||
        for i in range(self.intra_stages):
 | 
			
		||||
            for j in range(1, len(self.backend_decoders[i].torch_out)):
 | 
			
		||||
                key_value_states.append(self.backend_decoders[i].torch_out[j])
 | 
			
		||||
 | 
			
		||||
        cache_kwargs = {
 | 
			
		||||
            # "cache_position": cache_position,
 | 
			
		||||
            "max_seq_len": self.max_seq_len,
 | 
			
		||||
            "transpose": self.transpose_value,
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        for i in range(len(self.layer_indexes)):
 | 
			
		||||
            key_states, value_states = past_key_value.update(
 | 
			
		||||
                key_value_states[2 * i],
 | 
			
		||||
                key_value_states[2 * i + 1],
 | 
			
		||||
                new_keys[i],
 | 
			
		||||
                new_values[i],
 | 
			
		||||
                self.layer_indexes[i],
 | 
			
		||||
                cache_kwargs,
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
        for i in range(self.intra_stages):
 | 
			
		||||
            self.backend_decoders[i].load_wt_fn(
 | 
			
		||||
                3, self.backend_decoders[i]._mm, self.kv_cache_c_parameter_handel[i]
 | 
			
		||||
            )
 | 
			
		||||
        self.kv_cache_prefetched = True
 | 
			
		||||
            self.backend_decoders[i].load_cache_async()
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class FusedLlamaLowBitDecoderlayer(torch.nn.Module):
 | 
			
		||||
class FusedBaichuanLowBitDecoderlayer(torch.nn.Module):
 | 
			
		||||
    """LLAMA MLP operation NPU backend."""
 | 
			
		||||
 | 
			
		||||
    def __init__(
 | 
			
		||||
| 
						 | 
				
			
			@ -638,7 +468,7 @@ class FusedLlamaLowBitDecoderlayer(torch.nn.Module):
 | 
			
		|||
            np_dtype = np.float16
 | 
			
		||||
 | 
			
		||||
        self.backend_cls_prefill = partial(
 | 
			
		||||
            LowBitLlamaMultiDecoderlayer,
 | 
			
		||||
            LowBitBaichuanMultiDecoderlayer,
 | 
			
		||||
            num_heads=num_heads,
 | 
			
		||||
            # num_key_value_heads=num_key_value_heads,
 | 
			
		||||
            num_layers=1,
 | 
			
		||||
| 
						 | 
				
			
			@ -664,8 +494,6 @@ class FusedLlamaLowBitDecoderlayer(torch.nn.Module):
 | 
			
		|||
        past_key_value: Optional[Cache] = None,
 | 
			
		||||
        output_attentions: bool = False,
 | 
			
		||||
        use_cache: bool = False,
 | 
			
		||||
        # cache_position: Optional[torch.LongTensor] = None,
 | 
			
		||||
        # **kwargs,
 | 
			
		||||
    ) -> torch.Tensor:
 | 
			
		||||
        """Torch module forward method.
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -685,7 +513,6 @@ class FusedLlamaLowBitDecoderlayer(torch.nn.Module):
 | 
			
		|||
            inputs, self.op_parameters, backend_cls, self.op_id, replica=2
 | 
			
		||||
        )
 | 
			
		||||
        cache_kwargs = {
 | 
			
		||||
            # "cache_position": cache_position,
 | 
			
		||||
            "max_seq_len": self.max_seq_len,
 | 
			
		||||
            "transpose": self.transpose_value,
 | 
			
		||||
        }
 | 
			
		||||
| 
						 | 
				
			
			@ -756,7 +583,7 @@ def run_decode(
 | 
			
		|||
        input_layer_norm_weights.append(layer_norm_0)
 | 
			
		||||
        post_attn_layernorm_weights.append(layer_norm_1)
 | 
			
		||||
 | 
			
		||||
    multi_decoder = FusedLlamaLowBitMultiDecoderlayer(
 | 
			
		||||
    multi_decoder = FusedBaichuanLowBitMultiDecoderlayer(
 | 
			
		||||
        parameters=layer_weights,
 | 
			
		||||
        input_laynorm_weights=input_layer_norm_weights,
 | 
			
		||||
        post_attn_layernorm_weights=post_attn_layernorm_weights,
 | 
			
		||||
| 
						 | 
				
			
			@ -810,7 +637,7 @@ def run_decode(
 | 
			
		|||
                padded_causal_mask[:, :, :, -1] = 0.0
 | 
			
		||||
                dist.recv(hidden_states, src=rank - 1)
 | 
			
		||||
                t1 = time.perf_counter()
 | 
			
		||||
                layer_outputs, elapse = multi_decoder(
 | 
			
		||||
                layer_outputs = multi_decoder(
 | 
			
		||||
                    hidden_states,
 | 
			
		||||
                    attention_mask=padded_causal_mask,
 | 
			
		||||
                    position_ids=position_ids,
 | 
			
		||||
| 
						 | 
				
			
			@ -823,7 +650,10 @@ def run_decode(
 | 
			
		|||
                t3 = time.perf_counter()
 | 
			
		||||
                dist.send(hidden_states, dst=(rank + 1) % world_size)
 | 
			
		||||
                t4 = time.perf_counter()
 | 
			
		||||
                multi_decoder.post_forward(past_key_values)
 | 
			
		||||
                past_key_values = layer_outputs[1]
 | 
			
		||||
                new_keys = layer_outputs[2]
 | 
			
		||||
                new_values = layer_outputs[3]
 | 
			
		||||
                multi_decoder.post_forward(past_key_values, new_keys, new_values)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class DecodeRunner:
 | 
			
		||||
| 
						 | 
				
			
			@ -956,7 +786,7 @@ def run_prefill(
 | 
			
		|||
        layer_norm_0 = curr_layer.input_layernorm.weight.to(torch.float16)
 | 
			
		||||
        layer_norm_1 = curr_layer.post_attention_layernorm.weight.to(torch.float16)
 | 
			
		||||
 | 
			
		||||
        new_decoderlayer = FusedLlamaLowBitDecoderlayer(
 | 
			
		||||
        new_decoderlayer = FusedBaichuanLowBitDecoderlayer(
 | 
			
		||||
            weights,
 | 
			
		||||
            num_heads=num_heads,
 | 
			
		||||
            # num_key_value_heads=num_key_value_heads,
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue