fix qwen vl (#11090)
This commit is contained in:
		
							parent
							
								
									f654f7e08c
								
							
						
					
					
						commit
						71bcd18f44
					
				
					 1 changed files with 28 additions and 74 deletions
				
			
		| 
						 | 
					@ -33,7 +33,6 @@ from transformers.utils import logging
 | 
				
			||||||
from ipex_llm.transformers.models.utils import extend_kv_cache, init_kv_cache, append_kv_cache
 | 
					from ipex_llm.transformers.models.utils import extend_kv_cache, init_kv_cache, append_kv_cache
 | 
				
			||||||
from ipex_llm.transformers.models.utils import rotate_half
 | 
					from ipex_llm.transformers.models.utils import rotate_half
 | 
				
			||||||
from ipex_llm.transformers.models.utils import use_sdp
 | 
					from ipex_llm.transformers.models.utils import use_sdp
 | 
				
			||||||
from ipex_llm.transformers.models.utils import use_decoding_fast_path
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
import os
 | 
					import os
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -91,21 +90,31 @@ def qwen_attention_forward_vl(
 | 
				
			||||||
    device = hidden_states.device
 | 
					    device = hidden_states.device
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    use_fuse_rope = should_use_fuse_rope(self, hidden_states)
 | 
					    use_fuse_rope = should_use_fuse_rope(self, hidden_states)
 | 
				
			||||||
    decoding_fast_path = use_decoding_fast_path(self.q_proj,
 | 
					    mixed_x_layer = self.c_attn(hidden_states)
 | 
				
			||||||
                                                use_fuse_rope,
 | 
					    query, key, value = mixed_x_layer.split(self.split_size, dim=2)
 | 
				
			||||||
                                                True,
 | 
					 | 
				
			||||||
                                                bsz * q_len)
 | 
					 | 
				
			||||||
    if decoding_fast_path:
 | 
					 | 
				
			||||||
        hidden_states = hidden_states.view(1, -1)
 | 
					 | 
				
			||||||
        cache_k, cache_v = layer_past[0], layer_past[1]
 | 
					 | 
				
			||||||
        cache_k = cache_k.transpose(1, 2)
 | 
					 | 
				
			||||||
        cache_v = cache_v.transpose(1, 2)
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
        kv_seq_len = cache_k.shape[-2]
 | 
					    query = self._split_heads(query, self.num_heads, self.head_dim)
 | 
				
			||||||
        self.position_ids = self.position_ids.to(device)
 | 
					    key = self._split_heads(key, self.num_heads, self.head_dim)
 | 
				
			||||||
        position_ids = self.position_ids[kv_seq_len]
 | 
					    value = self._split_heads(value, self.num_heads, self.head_dim)
 | 
				
			||||||
        base = self.rope_base
 | 
					    if rotary_pos_emb is not None:
 | 
				
			||||||
        if is_enough_kv_cache_room(layer_past, kv_seq_len):
 | 
					        cur_len = query.shape[1]
 | 
				
			||||||
 | 
					        rotary_pos_emb = [i[:, -cur_len:, :, :] for i in rotary_pos_emb]
 | 
				
			||||||
 | 
					        rotary_pos_emb = (rotary_pos_emb,) * 2
 | 
				
			||||||
 | 
					        q_pos_emb, k_pos_emb = rotary_pos_emb
 | 
				
			||||||
 | 
					        # Slice the pos emb for current inference
 | 
				
			||||||
 | 
					        query = apply_rotary_pos_emb(query, q_pos_emb)
 | 
				
			||||||
 | 
					        key = apply_rotary_pos_emb(key, k_pos_emb)
 | 
				
			||||||
 | 
					    query_size, key_size = query.size(1), key.size(1)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if layer_past is not None:
 | 
				
			||||||
 | 
					        kv_seq_len += layer_past[0].shape[1]
 | 
				
			||||||
 | 
					        # past_key, past_value = layer_past[0], layer_past[1]
 | 
				
			||||||
 | 
					        # key = torch.cat((past_key, key), dim=1)
 | 
				
			||||||
 | 
					        # value = torch.cat((past_value, value), dim=1)
 | 
				
			||||||
 | 
					        cache_k = layer_past[0].transpose(1, 2)
 | 
				
			||||||
 | 
					        cache_v = layer_past[1].transpose(1, 2)
 | 
				
			||||||
 | 
					        if cache_k.stride()[1] < kv_seq_len * cache_k.size(3):
 | 
				
			||||||
 | 
					            # allocate new
 | 
				
			||||||
            new_cache_k, new_cache_v = extend_kv_cache(bsz,
 | 
					            new_cache_k, new_cache_v = extend_kv_cache(bsz,
 | 
				
			||||||
                                                       self.num_heads,
 | 
					                                                       self.num_heads,
 | 
				
			||||||
                                                       self.head_dim,
 | 
					                                                       self.head_dim,
 | 
				
			||||||
| 
						 | 
					@ -118,61 +127,10 @@ def qwen_attention_forward_vl(
 | 
				
			||||||
            cache_k = new_cache_k
 | 
					            cache_k = new_cache_k
 | 
				
			||||||
            cache_v = new_cache_v
 | 
					            cache_v = new_cache_v
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        args = [hidden_states, self.q_proj.weight.data, self.k_proj.weight.data,
 | 
					        key_states, value_states = append_kv_cache(cache_k, cache_v,
 | 
				
			||||||
                self.v_proj.weight.data, self.q_proj.bias.data, self.k_proj.bias.data,
 | 
					                                                   key.transpose(1, 2), value.transpose(1, 2))
 | 
				
			||||||
                self.v_proj.bias.data, position_ids, cache_k, cache_v, self.q_proj.weight.qtype,
 | 
					        key = key_states
 | 
				
			||||||
                self.v_proj.weight.qtype, kv_seq_len, self.head_dim, base]
 | 
					        value = value_states
 | 
				
			||||||
        import linear_q4_0
 | 
					 | 
				
			||||||
        query, key, value = linear_q4_0.forward_qkv_bias(*args)
 | 
					 | 
				
			||||||
        kv_seq_len += 1
 | 
					 | 
				
			||||||
        query_size, key_size = 1, 1
 | 
					 | 
				
			||||||
    else:
 | 
					 | 
				
			||||||
        query = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim)
 | 
					 | 
				
			||||||
        key = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim)
 | 
					 | 
				
			||||||
        value = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim)
 | 
					 | 
				
			||||||
        # TODO: speed up
 | 
					 | 
				
			||||||
        # mixed_x_layer = self.c_attn(hidden_states)
 | 
					 | 
				
			||||||
        # query, key, value = mixed_x_layer.split(self.split_size, dim=2)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        # query = self._split_heads(query, self.num_heads, self.head_dim)
 | 
					 | 
				
			||||||
        # key = self._split_heads(key, self.num_heads, self.head_dim)
 | 
					 | 
				
			||||||
        # value = self._split_heads(value, self.num_heads, self.head_dim)
 | 
					 | 
				
			||||||
        if rotary_pos_emb is not None:
 | 
					 | 
				
			||||||
            cur_len = query.shape[1]
 | 
					 | 
				
			||||||
            rotary_pos_emb = [i[:, -cur_len:, :, :] for i in rotary_pos_emb]
 | 
					 | 
				
			||||||
            rotary_pos_emb = (rotary_pos_emb,) * 2
 | 
					 | 
				
			||||||
            q_pos_emb, k_pos_emb = rotary_pos_emb
 | 
					 | 
				
			||||||
            # Slice the pos emb for current inference
 | 
					 | 
				
			||||||
            query = apply_rotary_pos_emb(query, q_pos_emb)
 | 
					 | 
				
			||||||
            key = apply_rotary_pos_emb(key, k_pos_emb)
 | 
					 | 
				
			||||||
        query_size, key_size = query.size(1), key.size(1)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    if layer_past is not None:
 | 
					 | 
				
			||||||
        if not decoding_fast_path:
 | 
					 | 
				
			||||||
            kv_seq_len += layer_past[0].shape[1]
 | 
					 | 
				
			||||||
            # past_key, past_value = layer_past[0], layer_past[1]
 | 
					 | 
				
			||||||
            # key = torch.cat((past_key, key), dim=1)
 | 
					 | 
				
			||||||
            # value = torch.cat((past_value, value), dim=1)
 | 
					 | 
				
			||||||
            cache_k = layer_past[0].transpose(1, 2)
 | 
					 | 
				
			||||||
            cache_v = layer_past[1].transpose(1, 2)
 | 
					 | 
				
			||||||
            if cache_k.stride()[1] < kv_seq_len * cache_k.size(3):
 | 
					 | 
				
			||||||
                # allocate new
 | 
					 | 
				
			||||||
                new_cache_k, new_cache_v = extend_kv_cache(bsz,
 | 
					 | 
				
			||||||
                                                           self.num_heads,
 | 
					 | 
				
			||||||
                                                           self.head_dim,
 | 
					 | 
				
			||||||
                                                           cache_k.size(2),
 | 
					 | 
				
			||||||
                                                           kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
 | 
					 | 
				
			||||||
                                                           dtype=cache_k.dtype,
 | 
					 | 
				
			||||||
                                                           device=hidden_states.device)
 | 
					 | 
				
			||||||
                new_cache_k[:] = cache_k
 | 
					 | 
				
			||||||
                new_cache_v[:] = cache_v
 | 
					 | 
				
			||||||
                cache_k = new_cache_k
 | 
					 | 
				
			||||||
                cache_v = new_cache_v
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
            key_states, value_states = append_kv_cache(cache_k, cache_v,
 | 
					 | 
				
			||||||
                                                       key.transpose(1, 2), value.transpose(1, 2))
 | 
					 | 
				
			||||||
            key = key_states
 | 
					 | 
				
			||||||
            value = value_states
 | 
					 | 
				
			||||||
    elif use_cache:
 | 
					    elif use_cache:
 | 
				
			||||||
        max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH
 | 
					        max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH
 | 
				
			||||||
        new_key_states, new_value_states = init_kv_cache(bsz,
 | 
					        new_key_states, new_value_states = init_kv_cache(bsz,
 | 
				
			||||||
| 
						 | 
					@ -192,10 +150,6 @@ def qwen_attention_forward_vl(
 | 
				
			||||||
    else:
 | 
					    else:
 | 
				
			||||||
        present = None
 | 
					        present = None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    if decoding_fast_path:
 | 
					 | 
				
			||||||
        # change to (bsz, q_len, num_heads, head_dim)
 | 
					 | 
				
			||||||
        query = query.transpose(1, 2)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    if self.use_logn_attn and not self.training:
 | 
					    if self.use_logn_attn and not self.training:
 | 
				
			||||||
        if self.logn_tensor.device != query.device or self.logn_tensor.dtype != query.dtype:
 | 
					        if self.logn_tensor.device != query.device or self.logn_tensor.dtype != query.dtype:
 | 
				
			||||||
            self.logn_tensor = self.logn_tensor.to(query.device).type_as(query)
 | 
					            self.logn_tensor = self.logn_tensor.to(query.device).type_as(query)
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in a new issue