Add serving docker quickstart (#11072)
* add temp file * add initial docker readme * temp * done * add fastchat service * fix * fix * fix * fix * remove stale file
This commit is contained in:
parent
f00625f9a4
commit
f654f7e08c
6 changed files with 287 additions and 1 deletions
|
|
@ -86,6 +86,12 @@
|
|||
<li>
|
||||
<a href="doc/LLM/DockerGuides/docker_cpp_xpu_quickstart.html">Run llama.cpp/Ollama/Open-WebUI on an Intel GPU via Docker</a>
|
||||
</li>
|
||||
<li>
|
||||
<a href="doc/LLM/DockerGuides/fastchat_docker_quickstart.html">Run IPEX-LLM integrated FastChat on an Intel GPU via Docker</a>
|
||||
</li>
|
||||
<li>
|
||||
<a href="doc/LLM/DockerGuides/vllm_docker_quickstart.html">Run IPEX-LLM integrated vLLM on an Intel GPU via Docker</a>
|
||||
</li>
|
||||
</ul>
|
||||
</li>
|
||||
<li>
|
||||
|
|
|
|||
|
|
@ -0,0 +1,117 @@
|
|||
# Serving using IPEX-LLM integrated FastChat on Intel GPUs via docker
|
||||
|
||||
This guide demonstrates how to do LLM serving with `IPEX-LLM` integrated `FastChat` in Docker on Linux with Intel GPUs.
|
||||
|
||||
## Install docker
|
||||
|
||||
Follow the instructions in this [guide](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/DockerGuides/docker_windows_gpu.html#linux) to install Docker on Linux.
|
||||
|
||||
## Pull the latest image
|
||||
|
||||
```bash
|
||||
# This image will be updated every day
|
||||
docker pull intelanalytics/ipex-llm-serving-xpu:latest
|
||||
```
|
||||
|
||||
## Start Docker Container
|
||||
|
||||
To map the `xpu` into the container, you need to specify `--device=/dev/dri` when booting the container. Change the `/path/to/models` to mount the models.
|
||||
|
||||
```
|
||||
#/bin/bash
|
||||
export DOCKER_IMAGE=intelanalytics/ipex-llm-serving-xpu:latest
|
||||
export CONTAINER_NAME=ipex-llm-serving-xpu-container
|
||||
sudo docker run -itd \
|
||||
--net=host \
|
||||
--device=/dev/dri \
|
||||
-v /path/to/models:/llm/models \
|
||||
-e no_proxy=localhost,127.0.0.1 \
|
||||
--memory="32G" \
|
||||
--name=$CONTAINER_NAME \
|
||||
--shm-size="16g" \
|
||||
$DOCKER_IMAGE
|
||||
```
|
||||
|
||||
After the container is booted, you could get into the container through `docker exec`.
|
||||
|
||||
```bash
|
||||
docker exec -it ipex-llm-serving-xpu-container /bin/bash
|
||||
```
|
||||
|
||||
|
||||
To verify the device is successfully mapped into the container, run `sycl-ls` to check the result. In a machine with Arc A770, the sampled output is:
|
||||
|
||||
```bash
|
||||
root@arda-arc12:/# sycl-ls
|
||||
[opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device 1.2 [2023.16.7.0.21_160000]
|
||||
[opencl:cpu:1] Intel(R) OpenCL, 13th Gen Intel(R) Core(TM) i9-13900K 3.0 [2023.16.7.0.21_160000]
|
||||
[opencl:gpu:2] Intel(R) OpenCL Graphics, Intel(R) Arc(TM) A770 Graphics 3.0 [23.17.26241.33]
|
||||
[ext_oneapi_level_zero:gpu:0] Intel(R) Level-Zero, Intel(R) Arc(TM) A770 Graphics 1.3 [1.3.26241]
|
||||
```
|
||||
|
||||
|
||||
## Running FastChat serving with IPEX-LLM on Intel GPU in Docker
|
||||
|
||||
For convenience, we have provided a script named `/llm/start-fastchat-service.sh` for you to start the service.
|
||||
|
||||
However, the script only provide instructions for the most common scenarios. If this script doesn't meet your needs, you can always find the complete guidance for FastChat at [Serving using IPEX-LLM and FastChat](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/fastchat_quickstart.html#start-the-service).
|
||||
|
||||
Before starting the service, you can refer to this [section](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/install_linux_gpu.html#runtime-configurations) to setup our recommended runtime configurations.
|
||||
|
||||
Now we can start the FastChat service, you can use our provided script `/llm/start-fastchat-service.sh` like the following way:
|
||||
|
||||
```bash
|
||||
# Only the MODEL_PATH needs to be set, other parameters have default values
|
||||
export MODEL_PATH=YOUR_SELECTED_MODEL_PATH
|
||||
export LOW_BIT_FORMAT=sym_int4
|
||||
export CONTROLLER_HOST=localhost
|
||||
export CONTROLLER_PORT=21001
|
||||
export WORKER_HOST=localhost
|
||||
export WORKER_PORT=21002
|
||||
export API_HOST=localhost
|
||||
export API_PORT=8000
|
||||
|
||||
# Use the default model_worker
|
||||
bash /llm/start-fastchat-service.sh -w model_worker
|
||||
```
|
||||
|
||||
If everything goes smoothly, the result should be similar to the following figure:
|
||||
|
||||
<a href="https://llm-assets.readthedocs.io/en/latest/_images/start-fastchat.png" target="_blank">
|
||||
<img src="https://llm-assets.readthedocs.io/en/latest/_images/start-fastchat.png" width=100%; />
|
||||
</a>
|
||||
|
||||
By default, we are using the `ipex_llm_worker` as the backend engine. You can also use `vLLM` as the backend engine. Try the following examples:
|
||||
|
||||
```bash
|
||||
# Only the MODEL_PATH needs to be set, other parameters have default values
|
||||
export MODEL_PATH=YOUR_SELECTED_MODEL_PATH
|
||||
export LOW_BIT_FORMAT=sym_int4
|
||||
export CONTROLLER_HOST=localhost
|
||||
export CONTROLLER_PORT=21001
|
||||
export WORKER_HOST=localhost
|
||||
export WORKER_PORT=21002
|
||||
export API_HOST=localhost
|
||||
export API_PORT=8000
|
||||
|
||||
# Use the default model_worker
|
||||
bash /llm/start-fastchat-service.sh -w vllm_worker
|
||||
```
|
||||
|
||||
The `vllm_worker` may start slowly than normal `ipex_llm_worker`. The booted service should be similar to the following figure:
|
||||
|
||||
<a href="https://llm-assets.readthedocs.io/en/latest/_images/fastchat-vllm-worker.png" target="_blank">
|
||||
<img src="https://llm-assets.readthedocs.io/en/latest/_images/fastchat-vllm-worker.png" width=100%; />
|
||||
</a>
|
||||
|
||||
|
||||
```eval_rst
|
||||
.. note::
|
||||
To verify/use the service booted by the script, follow the instructions in `this guide <https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/fastchat_quickstart.html#launch-restful-api-serve>`_.
|
||||
```
|
||||
|
||||
After a request has been sent to the `openai_api_server`, the corresponding inference time latency can be found in the worker log as shown below:
|
||||
|
||||
<a href="https://llm-assets.readthedocs.io/en/latest/_images/fastchat-benchmark.png" target="_blank">
|
||||
<img src="https://llm-assets.readthedocs.io/en/latest/_images/fastchat-benchmark.png" width=100%; />
|
||||
</a>
|
||||
|
|
@ -6,4 +6,6 @@ In this section, you will find guides related to using IPEX-LLM with Docker, cov
|
|||
|
||||
* `Overview of IPEX-LLM Containers for Intel GPU <./docker_windows_gpu.html>`_
|
||||
* `Run PyTorch Inference on an Intel GPU via Docker <./docker_pytorch_inference_gpu.html>`_
|
||||
* `Run llama.cpp/Ollama/open-webui with Docker on Intel GPU <./docker_cpp_xpu_quickstart.html>`_
|
||||
* `Run llama.cpp/Ollama/open-webui with Docker on Intel GPU <./docker_cpp_xpu_quickstart.html>`_
|
||||
* `Run IPEX-LLM integrated FastChat with Docker on Intel GPU <./fastchat_docker_quickstart>`_
|
||||
* `Run IPEX-LLM integrated vLLM with Docker on Intel GPU <./vllm_docker_quickstart>`_
|
||||
|
|
@ -0,0 +1,145 @@
|
|||
# Serving using IPEX-LLM integrated vLLM on Intel GPUs via docker
|
||||
|
||||
This guide demonstrates how to do LLM serving with `IPEX-LLM` integrated `vLLM` in Docker on Linux with Intel GPUs.
|
||||
|
||||
## Install docker
|
||||
|
||||
Follow the instructions in this [guide](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/DockerGuides/docker_windows_gpu.html#linux) to install Docker on Linux.
|
||||
|
||||
## Pull the latest image
|
||||
|
||||
```bash
|
||||
# This image will be updated every day
|
||||
docker pull intelanalytics/ipex-llm-serving-xpu:latest
|
||||
```
|
||||
|
||||
## Start Docker Container
|
||||
|
||||
To map the `xpu` into the container, you need to specify `--device=/dev/dri` when booting the container. Change the `/path/to/models` to mount the models.
|
||||
|
||||
```
|
||||
#/bin/bash
|
||||
export DOCKER_IMAGE=intelanalytics/ipex-llm-serving-xpu:latest
|
||||
export CONTAINER_NAME=ipex-llm-serving-xpu-container
|
||||
sudo docker run -itd \
|
||||
--net=host \
|
||||
--device=/dev/dri \
|
||||
-v /path/to/models:/llm/models \
|
||||
-e no_proxy=localhost,127.0.0.1 \
|
||||
--memory="32G" \
|
||||
--name=$CONTAINER_NAME \
|
||||
--shm-size="16g" \
|
||||
$DOCKER_IMAGE
|
||||
```
|
||||
|
||||
After the container is booted, you could get into the container through `docker exec`.
|
||||
|
||||
```bash
|
||||
docker exec -it ipex-llm-serving-xpu-container /bin/bash
|
||||
```
|
||||
|
||||
|
||||
To verify the device is successfully mapped into the container, run `sycl-ls` to check the result. In a machine with Arc A770, the sampled output is:
|
||||
|
||||
```bash
|
||||
root@arda-arc12:/# sycl-ls
|
||||
[opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device 1.2 [2023.16.7.0.21_160000]
|
||||
[opencl:cpu:1] Intel(R) OpenCL, 13th Gen Intel(R) Core(TM) i9-13900K 3.0 [2023.16.7.0.21_160000]
|
||||
[opencl:gpu:2] Intel(R) OpenCL Graphics, Intel(R) Arc(TM) A770 Graphics 3.0 [23.17.26241.33]
|
||||
[ext_oneapi_level_zero:gpu:0] Intel(R) Level-Zero, Intel(R) Arc(TM) A770 Graphics 1.3 [1.3.26241]
|
||||
```
|
||||
|
||||
## Running vLLM serving with IPEX-LLM on Intel GPU in Docker
|
||||
|
||||
We have included multiple vLLM-related files in `/llm/`:
|
||||
1. `vllm_offline_inference.py`: Used for vLLM offline inference example
|
||||
2. `benchmark_vllm_throughput.py`: Used for benchmarking throughput
|
||||
3. `payload-1024.lua`: Used for testing request per second using 1k-128 request
|
||||
4. `start-vllm-service.sh`: Used for template for starting vLLM service
|
||||
|
||||
Before performing benchmark or starting the service, you can refer to this [section](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/install_linux_gpu.html#runtime-configurations) to setup our recommended runtime configurations.
|
||||
|
||||
|
||||
### Service
|
||||
|
||||
#### Single card serving
|
||||
|
||||
A script named `/llm/start-vllm-service.sh` have been included in the image for starting the service conveniently.
|
||||
|
||||
Modify the `model` and `served_model_name` in the script so that it fits your requirement. The `served_model_name` indicates the model name used in the API.
|
||||
|
||||
Then start the service using `bash /llm/start-vllm-service.sh`, the following message should be print if the service started successfully.
|
||||
|
||||
If the service have booted successfully, you should see the output similar to the following figure:
|
||||
|
||||
<a href="https://llm-assets.readthedocs.io/en/latest/_images/start-vllm-service.png" target="_blank">
|
||||
<img src="https://llm-assets.readthedocs.io/en/latest/_images/start-vllm-service.png" width=100%; />
|
||||
</a>
|
||||
|
||||
|
||||
#### Multi-card serving
|
||||
|
||||
vLLM supports to utilize multiple cards through tensor parallel.
|
||||
|
||||
You can refer to this [documentation](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/vLLM_quickstart.html#about-tensor-paralle) on how to utilize the `tensor-parallel` feature and start the service.
|
||||
|
||||
#### Verify
|
||||
After the service has been booted successfully, you can send a test request using `curl`. Here, `YOUR_MODEL` should be set equal to `served_model_name` in your booting script, e.g. `Qwen1.5`.
|
||||
|
||||
|
||||
```bash
|
||||
curl http://localhost:8000/v1/completions \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"model": "YOUR_MODEL",
|
||||
"prompt": "San Francisco is a",
|
||||
"max_tokens": 128,
|
||||
"temperature": 0
|
||||
}' | jq '.choices[0].text'
|
||||
```
|
||||
|
||||
Below shows an example output using `Qwen1.5-7B-Chat` with low-bit format `sym_int4`:
|
||||
|
||||
<a href="https://llm-assets.readthedocs.io/en/latest/_images/vllm-curl-result.png" target="_blank">
|
||||
<img src="https://llm-assets.readthedocs.io/en/latest/_images/vllm-curl-result.png" width=100%; />
|
||||
</a>
|
||||
|
||||
#### Tuning
|
||||
|
||||
You can tune the service using these four arguments:
|
||||
- `--gpu-memory-utilization`
|
||||
- `--max-model-len`
|
||||
- `--max-num-batched-token`
|
||||
- `--max-num-seq`
|
||||
|
||||
You can refer to this [doc](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/vLLM_quickstart.html#service) for a detailed explaination on these parameters.
|
||||
|
||||
### Benchmark
|
||||
|
||||
#### Online benchmark throurgh api_server
|
||||
|
||||
We can benchmark the api_server to get an estimation about TPS (transactions per second). To do so, you need to start the service first according to the instructions mentioned above.
|
||||
|
||||
Then in the container, do the following:
|
||||
1. modify the `/llm/payload-1024.lua` so that the "model" attribute is correct. By default, we use a prompt that is roughly 1024 token long, you can change it if needed.
|
||||
2. Start the benchmark using `wrk` using the script below:
|
||||
|
||||
```bash
|
||||
cd /llm
|
||||
# warmup due to JIT compliation
|
||||
wrk -t4 -c4 -d3m -s payload-1024.lua http://localhost:8000/v1/completions --timeout 1h
|
||||
# You can change -t and -c to control the concurrency.
|
||||
# By default, we use 12 connections to benchmark the service.
|
||||
wrk -t12 -c12 -d15m -s payload-1024.lua http://localhost:8000/v1/completions --timeout 1h
|
||||
```
|
||||
|
||||
The following figure shows performing benchmark on `Llama-2-7b-chat-hf` using the above script:
|
||||
|
||||
<a href="https://llm-assets.readthedocs.io/en/latest/_images/service-benchmark-result.png" target="_blank">
|
||||
<img src="https://llm-assets.readthedocs.io/en/latest/_images/service-benchmark-result.png" width=100%; />
|
||||
</a>
|
||||
|
||||
|
||||
#### Offline benchmark through benchmark_vllm_throughput.py
|
||||
|
||||
Please refer to this [section](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/vLLM_quickstart.html#performing-benchmark) on how to use `benchmark_vllm_throughput.py` for benchmarking.
|
||||
|
|
@ -61,6 +61,15 @@ export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
|
|||
python3 -m ipex_llm.serving.fastchat.ipex_llm_worker --model-path REPO_ID_OR_YOUR_MODEL_PATH --low-bit "sym_int4" --trust-remote-code --device "xpu"
|
||||
```
|
||||
|
||||
We have also provided an option `--load-low-bit-model` to load models that have been converted and saved into disk using the `save_low_bit` interface as introduced in this [document](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Overview/KeyFeatures/hugging_face_format.html#save-load).
|
||||
|
||||
Check the following examples:
|
||||
|
||||
```bash
|
||||
# Or --device "cpu"
|
||||
python -m ipex_llm.serving.fastchat.ipex_llm_worker --model-path /Low/Bit/Model/Path --trust-remote-code --device "xpu" --load-low-bit-model
|
||||
```
|
||||
|
||||
#### For self-speculative decoding example:
|
||||
|
||||
You can use IPEX-LLM to run `self-speculative decoding` example. Refer to [here](https://github.com/intel-analytics/ipex-llm/tree/c9fac8c26bf1e1e8f7376fa9a62b32951dd9e85d/python/llm/example/GPU/Speculative-Decoding) for more details on intel MAX GPUs. Refer to [here](https://github.com/intel-analytics/ipex-llm/tree/c9fac8c26bf1e1e8f7376fa9a62b32951dd9e85d/python/llm/example/GPU/Speculative-Decoding) for more details on intel CPUs.
|
||||
|
|
|
|||
|
|
@ -4,6 +4,13 @@ vLLM is a fast and easy-to-use library for LLM inference and serving. You can fi
|
|||
|
||||
IPEX-LLM can be integrated into vLLM so that user can use `IPEX-LLM` to boost the performance of vLLM engine on Intel **GPUs** *(e.g., local PC with descrete GPU such as Arc, Flex and Max)*.
|
||||
|
||||
Currently, IPEX-LLM integrated vLLM only supports the following models:
|
||||
|
||||
- Qwen series models
|
||||
- Llama series models
|
||||
- ChatGLM series models
|
||||
- Baichuan series models
|
||||
|
||||
|
||||
## Quick Start
|
||||
|
||||
|
|
|
|||
Loading…
Reference in a new issue