fix glm4-9b overflow (#12455)
This commit is contained in:
parent
281c9b0bb9
commit
6f3441ba4c
2 changed files with 72 additions and 0 deletions
|
|
@ -1477,6 +1477,12 @@ def _optimize_post(model, lightweight_bmm=False):
|
|||
convert_forward(model, module.ChatGLMModel, chatglm4_model_forward)
|
||||
convert_forward(model, module.GLMTransformer, chatglm4_encoder_forward)
|
||||
convert_forward(model, module.MLP, mlp_forward)
|
||||
|
||||
if model.config.num_layers == 40:
|
||||
# workaround glm4-9b fp16 overflow
|
||||
from ipex_llm.transformers.models.chatglm4 import chatglm4_block_forward
|
||||
convert_forward(model, module.GLMBlock, chatglm4_block_forward)
|
||||
|
||||
elif "mpt" in model.config.model_type:
|
||||
if model.config.architectures is not None:
|
||||
modeling_module_name = model.__class__.__module__
|
||||
|
|
|
|||
|
|
@ -363,3 +363,69 @@ def chatglm4_encoder_forward(
|
|||
hidden_states = self.final_layernorm(hidden_states)
|
||||
|
||||
return hidden_states, presents, all_hidden_states, all_self_attentions
|
||||
|
||||
|
||||
def chatglm4_block_forward(
|
||||
self,
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
rotary_pos_emb,
|
||||
kv_cache=None,
|
||||
use_cache=True,
|
||||
):
|
||||
# hidden_states: [s, b, h]
|
||||
|
||||
# Layer norm at the beginning of the transformer layer.
|
||||
layernorm_output = self.input_layernorm(hidden_states)
|
||||
# Self attention.
|
||||
attention_output, kv_cache = self.self_attention(
|
||||
layernorm_output,
|
||||
attention_mask,
|
||||
rotary_pos_emb,
|
||||
kv_cache=kv_cache,
|
||||
use_cache=use_cache
|
||||
)
|
||||
|
||||
# Residual connection.
|
||||
if self.apply_residual_connection_post_layernorm:
|
||||
residual = layernorm_output
|
||||
else:
|
||||
residual = hidden_states
|
||||
|
||||
layernorm_input = torch.nn.functional.dropout(attention_output, p=self.hidden_dropout,
|
||||
training=self.training)
|
||||
layernorm_input = residual + layernorm_input
|
||||
|
||||
# Layer norm post the self attention.
|
||||
layernorm_output = self.post_attention_layernorm(layernorm_input)
|
||||
|
||||
# ipex-llm changes start: workaround fp16 overflow
|
||||
scale = 10
|
||||
if self.layer_number == 39 and layernorm_output.device.type == 'xpu':
|
||||
gate = self.mlp.gate_proj(layernorm_output)
|
||||
up = self.mlp.up_proj(layernorm_output)
|
||||
down = self.mlp.activation_fn(gate) / scale * up
|
||||
mlp_output = self.mlp.dense_4h_to_h(down)
|
||||
else:
|
||||
# MLP.
|
||||
mlp_output = self.mlp(layernorm_output)
|
||||
# ipex-llm changes end
|
||||
|
||||
# Second residual connection.
|
||||
if self.apply_residual_connection_post_layernorm:
|
||||
residual = layernorm_output
|
||||
else:
|
||||
residual = layernorm_input
|
||||
|
||||
output = torch.nn.functional.dropout(mlp_output, p=self.hidden_dropout,
|
||||
training=self.training)
|
||||
|
||||
# ipex-llm changes start: workaround fp16 overflow
|
||||
if self.layer_number == 39 and layernorm_output.device.type == 'xpu':
|
||||
output = residual + output * scale
|
||||
output = torch.nan_to_num(output)
|
||||
else:
|
||||
output = residual + output
|
||||
# ipex-llm changes end
|
||||
|
||||
return output, kv_cache
|
||||
|
|
|
|||
Loading…
Reference in a new issue