[NPU] Add L0 support for NPU C++ (#12454)

* add L0 models support

* meet review

* fix style
This commit is contained in:
Ruonan Wang 2024-11-27 01:04:13 -08:00 committed by GitHub
parent ce6fcaa9ba
commit 281c9b0bb9
No known key found for this signature in database
GPG key ID: B5690EEEBB952194

View file

@ -197,7 +197,7 @@ def convert_llm(model: torch.nn.Module,
convert_model: bool=False,
save_directory: str=None):
# whether to set layernorm weight as const
layernorm_const = os.environ.get("IPEX_LLM_LAYERNORM_CONST", "1") == "1"
layernorm_const = os.environ.get("IPEX_LLM_NPU_LAYERNORM_CONST", "1") == "1"
if group_size == 0:
n_splits_linear = 1
if qtype == "sym_int8_rtn":
@ -344,7 +344,7 @@ def convert_llm(model: torch.nn.Module,
invalidInputError(False,
"False to InitLLMPipeline.")
elif model.config.model_type == "qwen2":
layernorm_const = os.environ.get("IPEX_LLM_LAYERNORM_CONST", "0") == "1"
layernorm_const = os.environ.get("IPEX_LLM_NPU_LAYERNORM_CONST", "0") == "1"
with tempfile.TemporaryDirectory() as temp_dir:
if save_directory is not None:
temp_dir = save_directory
@ -426,9 +426,11 @@ def convert_llm_for_deploy(model: torch.nn.Module,
os.mkdir(save_directory)
weight_dir = os.path.join(save_directory, "model_weights")
os.mkdir(weight_dir)
use_level_zero = os.environ.get("IPEX_LLM_NPU_USE_LEVEL0", "0") == "1"
layernorm_const = os.environ.get("IPEX_LLM_NPU_LAYERNORM_CONST", "1") == "1"
if model.config.model_type == "qwen2":
layernorm_const = True
layernorm_const = os.environ.get("IPEX_LLM_NPU_LAYERNORM_CONST", "0") == "1"
if model.config.hidden_size == 1536:
# Qwen2-1.5B-Instruct
fused_layers = 1
@ -447,16 +449,28 @@ def convert_llm_for_deploy(model: torch.nn.Module,
"weight_num": 7,
"weight_idx": 8,
"n_splits_linear": n_splits_linear,
"n_splits_down_proj": n_splits_down_proj}
"n_splits_down_proj": n_splits_down_proj,
"use_level_zero": use_level_zero}
model.config.update(update_dict)
model.config.save_pretrained(save_directory)
from .qwen import convert_qwen_layer, convert_fused_qwen_layer
from .qwen import convert_lm_head_and_embedding
# save fused_layers blobs of fused decoder layers
convert_fused_qwen_layer(model, fused_layers, n_splits_linear, n_splits_down_proj,
save_directory, weight_dir, transpose_value_cache, kv_len,
group_size, layernorm_const, "decode")
if not use_level_zero:
# save fused_layers blobs of fused decoder layers
convert_fused_qwen_layer(model, fused_layers, n_splits_linear, n_splits_down_proj,
save_directory, weight_dir, transpose_value_cache, kv_len,
group_size, layernorm_const, "decode")
else:
# save layer_num blobs of each decoder layer
layer_num = len(model.model.layers)
param_list = []
for layer_idx in range(0, layer_num):
param_list.append((model, layer_idx, n_splits_linear, n_splits_down_proj,
save_directory, weight_dir, transpose_value_cache, kv_len,
group_size, layernorm_const))
with Pool() as pool:
result = pool.starmap(convert_qwen_layer, param_list)
# save blob of single prefill layer
convert_qwen_layer(model, 0, n_splits_linear, n_splits_down_proj,
save_directory, weight_dir, transpose_value_cache, max_prompt_len,
@ -466,7 +480,6 @@ def convert_llm_for_deploy(model: torch.nn.Module,
save_directory, weight_dir,
convert_model=True)
elif model.config.model_type == "llama":
layernorm_const = True
embedding_post = False
cos_sin_input = False
use_prefill_sdp = False
@ -499,7 +512,8 @@ def convert_llm_for_deploy(model: torch.nn.Module,
"embedding_post": embedding_post,
"cos_sin_input": cos_sin_input,
"n_splits_linear": n_splits_linear,
"n_splits_down_proj": n_splits_down_proj}
"n_splits_down_proj": n_splits_down_proj,
"use_level_zero": use_level_zero}
model.config.update(update_dict)
model.config.save_pretrained(save_directory)
@ -519,7 +533,6 @@ def convert_llm_for_deploy(model: torch.nn.Module,
save_directory, weight_dir, transpose_value_cache, max_prompt_len,
group_size, layernorm_const, "prefill")
elif model.config.model_type == "minicpm":
layernorm_const = True
fused_layers = 4
update_dict = {"kv_len": kv_len,
"num_head": model.model.layers[0].self_attn.num_heads,
@ -536,7 +549,8 @@ def convert_llm_for_deploy(model: torch.nn.Module,
"model_type": "minicpm",
"embedding_post": True,
"n_splits_linear": n_splits_linear,
"n_splits_down_proj": n_splits_down_proj}
"n_splits_down_proj": n_splits_down_proj,
"use_level_zero": use_level_zero}
model.config.update(update_dict)
model.config.save_pretrained(save_directory)