fix glm4-9b overflow (#12455)
This commit is contained in:
		
							parent
							
								
									281c9b0bb9
								
							
						
					
					
						commit
						6f3441ba4c
					
				
					 2 changed files with 72 additions and 0 deletions
				
			
		| 
						 | 
				
			
			@ -1477,6 +1477,12 @@ def _optimize_post(model, lightweight_bmm=False):
 | 
			
		|||
                convert_forward(model, module.ChatGLMModel, chatglm4_model_forward)
 | 
			
		||||
                convert_forward(model, module.GLMTransformer, chatglm4_encoder_forward)
 | 
			
		||||
                convert_forward(model, module.MLP, mlp_forward)
 | 
			
		||||
 | 
			
		||||
                if model.config.num_layers == 40:
 | 
			
		||||
                    # workaround glm4-9b fp16 overflow
 | 
			
		||||
                    from ipex_llm.transformers.models.chatglm4 import chatglm4_block_forward
 | 
			
		||||
                    convert_forward(model, module.GLMBlock, chatglm4_block_forward)
 | 
			
		||||
 | 
			
		||||
    elif "mpt" in model.config.model_type:
 | 
			
		||||
        if model.config.architectures is not None:
 | 
			
		||||
            modeling_module_name = model.__class__.__module__
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -363,3 +363,69 @@ def chatglm4_encoder_forward(
 | 
			
		|||
        hidden_states = self.final_layernorm(hidden_states)
 | 
			
		||||
 | 
			
		||||
    return hidden_states, presents, all_hidden_states, all_self_attentions
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def chatglm4_block_forward(
 | 
			
		||||
    self,
 | 
			
		||||
    hidden_states,
 | 
			
		||||
    attention_mask,
 | 
			
		||||
    rotary_pos_emb,
 | 
			
		||||
    kv_cache=None,
 | 
			
		||||
    use_cache=True,
 | 
			
		||||
):
 | 
			
		||||
    # hidden_states: [s, b, h]
 | 
			
		||||
 | 
			
		||||
    # Layer norm at the beginning of the transformer layer.
 | 
			
		||||
    layernorm_output = self.input_layernorm(hidden_states)
 | 
			
		||||
    # Self attention.
 | 
			
		||||
    attention_output, kv_cache = self.self_attention(
 | 
			
		||||
        layernorm_output,
 | 
			
		||||
        attention_mask,
 | 
			
		||||
        rotary_pos_emb,
 | 
			
		||||
        kv_cache=kv_cache,
 | 
			
		||||
        use_cache=use_cache
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Residual connection.
 | 
			
		||||
    if self.apply_residual_connection_post_layernorm:
 | 
			
		||||
        residual = layernorm_output
 | 
			
		||||
    else:
 | 
			
		||||
        residual = hidden_states
 | 
			
		||||
 | 
			
		||||
    layernorm_input = torch.nn.functional.dropout(attention_output, p=self.hidden_dropout,
 | 
			
		||||
                                                  training=self.training)
 | 
			
		||||
    layernorm_input = residual + layernorm_input
 | 
			
		||||
 | 
			
		||||
    # Layer norm post the self attention.
 | 
			
		||||
    layernorm_output = self.post_attention_layernorm(layernorm_input)
 | 
			
		||||
 | 
			
		||||
    # ipex-llm changes start: workaround fp16 overflow
 | 
			
		||||
    scale = 10
 | 
			
		||||
    if self.layer_number == 39 and layernorm_output.device.type == 'xpu':
 | 
			
		||||
        gate = self.mlp.gate_proj(layernorm_output)
 | 
			
		||||
        up = self.mlp.up_proj(layernorm_output)
 | 
			
		||||
        down = self.mlp.activation_fn(gate) / scale * up
 | 
			
		||||
        mlp_output = self.mlp.dense_4h_to_h(down)
 | 
			
		||||
    else:
 | 
			
		||||
        # MLP.
 | 
			
		||||
        mlp_output = self.mlp(layernorm_output)
 | 
			
		||||
    # ipex-llm changes end
 | 
			
		||||
 | 
			
		||||
    # Second residual connection.
 | 
			
		||||
    if self.apply_residual_connection_post_layernorm:
 | 
			
		||||
        residual = layernorm_output
 | 
			
		||||
    else:
 | 
			
		||||
        residual = layernorm_input
 | 
			
		||||
 | 
			
		||||
    output = torch.nn.functional.dropout(mlp_output, p=self.hidden_dropout,
 | 
			
		||||
                                         training=self.training)
 | 
			
		||||
 | 
			
		||||
    # ipex-llm changes start: workaround fp16 overflow
 | 
			
		||||
    if self.layer_number == 39 and layernorm_output.device.type == 'xpu':
 | 
			
		||||
        output = residual + output * scale
 | 
			
		||||
        output = torch.nan_to_num(output)
 | 
			
		||||
    else:
 | 
			
		||||
        output = residual + output
 | 
			
		||||
    # ipex-llm changes end
 | 
			
		||||
 | 
			
		||||
    return output, kv_cache
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue