Update PP inference benchmark script (#11323)
This commit is contained in:
		
							parent
							
								
									be00380f1a
								
							
						
					
					
						commit
						6ea1e71af0
					
				
					 5 changed files with 63 additions and 82 deletions
				
			
		| 
						 | 
				
			
			@ -27,7 +27,7 @@ repo_id:
 | 
			
		|||
  - 'meta-llama/Llama-2-7b-chat-hf'
 | 
			
		||||
  # - 'liuhaotian/llava-v1.5-7b' # requires a LLAVA_REPO_DIR env variables pointing to the llava dir; added only for gpu win related test_api now
 | 
			
		||||
local_model_hub: 'path to your local model hub'
 | 
			
		||||
warm_up: 1
 | 
			
		||||
warm_up: 1 # must set >=2 when run "pipeline_parallel_gpu" test_api
 | 
			
		||||
num_trials: 3
 | 
			
		||||
num_beams: 1 # default to greedy search
 | 
			
		||||
low_bit: 'sym_int4' # default to use 'sym_int4' (i.e. symmetric int4)
 | 
			
		||||
| 
						 | 
				
			
			@ -36,29 +36,33 @@ in_out_pairs:
 | 
			
		|||
  - '32-32'
 | 
			
		||||
  - '1024-128'
 | 
			
		||||
test_api:
 | 
			
		||||
  - "transformer_int4_gpu"  # on Intel GPU
 | 
			
		||||
  # - "transformer_int4_fp16_gpu" # on Intel GPU, use fp16 for non-linear layer
 | 
			
		||||
  # - "ipex_fp16_gpu" # on Intel GPU
 | 
			
		||||
  # - "bigdl_fp16_gpu" # on Intel GPU
 | 
			
		||||
  # - "optimize_model_gpu"  # on Intel GPU
 | 
			
		||||
  # - "transformer_int4_gpu_win" # on Intel GPU for Windows
 | 
			
		||||
  # - "transformer_int4_fp16_gpu_win" # on Intel GPU for Windows, use fp16 for non-linear layer
 | 
			
		||||
  # - "transformer_int4_loadlowbit_gpu_win" # on Intel GPU for Windows using load_low_bit API. Please make sure you have used the save.py to save the converted low bit model
 | 
			
		||||
  # - "deepspeed_optimize_model_gpu" # deepspeed autotp on Intel GPU
 | 
			
		||||
  # - "speculative_gpu"
 | 
			
		||||
  # - "transformer_int4"
 | 
			
		||||
  # - "native_int4"
 | 
			
		||||
  # - "optimize_model"
 | 
			
		||||
  # - "pytorch_autocast_bf16"
 | 
			
		||||
  # - "transformer_autocast_bf16"
 | 
			
		||||
  # - "bigdl_ipex_bf16"
 | 
			
		||||
  # - "bigdl_ipex_int4"
 | 
			
		||||
  # - "bigdl_ipex_int8"
 | 
			
		||||
  # - "speculative_cpu"
 | 
			
		||||
  # - "deepspeed_transformer_int4_cpu" # on Intel SPR Server
 | 
			
		||||
  - "transformer_int4_fp16_gpu"             # on Intel GPU, transformer-like API, (qtype=int4), (dtype=fp16)
 | 
			
		||||
  # - "transformer_int4_fp16_gpu_win"       # on Intel GPU for Windows, transformer-like API, (qtype=int4), (dtype=fp16)
 | 
			
		||||
  # - "transformer_int4_gpu"                # on Intel GPU, transformer-like API, (qtype=int4), (dtype=fp32)
 | 
			
		||||
  # - "transformer_int4_gpu_win"            # on Intel GPU for Windows, transformer-like API, (qtype=int4), (dtype=fp32)
 | 
			
		||||
  # - "transformer_int4_loadlowbit_gpu_win" # on Intel GPU for Windows, transformer-like API, (qtype=int4), use load_low_bit API. Please make sure you have used the save.py to save the converted low bit model
 | 
			
		||||
  # - "bigdl_fp16_gpu"                      # on Intel GPU, use ipex-llm transformers API, (dtype=fp16), (qtype=fp16)
 | 
			
		||||
  # - "optimize_model_gpu"                  # on Intel GPU, can optimize any pytorch models include transformer model
 | 
			
		||||
  # - "deepspeed_optimize_model_gpu"        # on Intel GPU, deepspeed autotp inference
 | 
			
		||||
  # - "pipeline_parallel_gpu"               # on Intel GPU, pipeline parallel inference
 | 
			
		||||
  # - "speculative_gpu"                     # on Intel GPU, inference with self-speculative decoding
 | 
			
		||||
  # - "transformer_int4"                    # on Intel CPU, transformer-like API, (qtype=int4)
 | 
			
		||||
  # - "native_int4"                         # on Intel CPU
 | 
			
		||||
  # - "optimize_model"                      # on Intel CPU, can optimize any pytorch models include transformer model
 | 
			
		||||
  # - "pytorch_autocast_bf16"               # on Intel CPU
 | 
			
		||||
  # - "transformer_autocast_bf16"           # on Intel CPU
 | 
			
		||||
  # - "bigdl_ipex_bf16"                     # on Intel CPU, (qtype=bf16)
 | 
			
		||||
  # - "bigdl_ipex_int4"                     # on Intel CPU, (qtype=int4)
 | 
			
		||||
  # - "bigdl_ipex_int8"                     # on Intel CPU, (qtype=int8)
 | 
			
		||||
  # - "speculative_cpu"                     # on Intel CPU, inference with self-speculative decoding
 | 
			
		||||
  # - "deepspeed_transformer_int4_cpu"      # on Intel CPU, deepspeed autotp inference
 | 
			
		||||
  # - "transformer_int4_fp16_lookahead_gpu" # on Intel GPU, transformer-like API, with lookahead, (qtype=int4), (dtype=fp16)
 | 
			
		||||
cpu_embedding: False # whether put embedding to CPU
 | 
			
		||||
streaming: False # whether output in streaming way (only avaiable now for gpu win related test_api)
 | 
			
		||||
 | 
			
		||||
streaming: False # whether output in streaming way (only available now for gpu win related test_api)
 | 
			
		||||
use_fp16_torch_dtype: True # whether use fp16 for non-linear layer (only available now for "pipeline_parallel_gpu" test_api)
 | 
			
		||||
lookahead: 3
 | 
			
		||||
max_matching_ngram_size: 2
 | 
			
		||||
task: 'continuation' # when test_api is "transformer_int4_fp16_lookahead_gpu", task could be 'QA', 'continuation' or 'summarize' 
 | 
			
		||||
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -36,7 +36,6 @@ test_api:
 | 
			
		|||
cpu_embedding: False # whether put embedding to CPU
 | 
			
		||||
streaming: False # whether output in streaming way (only available now for gpu win related test_api)
 | 
			
		||||
use_fp16_torch_dtype: True # whether use fp16 for non-linear layer (only available now for "pipeline_parallel_gpu" test_api)
 | 
			
		||||
n_gpu: 2 # number of GPUs to use (only available now for "pipeline_parallel_gpu" test_api)
 | 
			
		||||
lookahead: 3
 | 
			
		||||
max_matching_ngram_size: 2
 | 
			
		||||
task: 'continuation' # when test_api is "transformer_int4_fp16_lookahead_gpu", task could be 'QA', 'continuation' or 'summarize' 
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -0,0 +1,13 @@
 | 
			
		|||
source /opt/intel/oneapi/setvars.sh
 | 
			
		||||
export MASTER_ADDR=127.0.0.1
 | 
			
		||||
export MASTER_PORT=8080
 | 
			
		||||
export FI_PROVIDER=tcp
 | 
			
		||||
export USE_XETLA=OFF
 | 
			
		||||
export OMP_NUM_THREADS=6
 | 
			
		||||
if [[ $KERNEL_VERSION != *"6.5"* ]]; then
 | 
			
		||||
    export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
 | 
			
		||||
fi
 | 
			
		||||
export TORCH_LLM_ALLREDUCE=0
 | 
			
		||||
 | 
			
		||||
NUM_GPUS=2 # number of used GPU
 | 
			
		||||
CCL_ZE_IPC_EXCHANGE=sockets torchrun --standalone --nnodes=1 --nproc-per-node $NUM_GPUS run.py
 | 
			
		||||
| 
						 | 
				
			
			@ -106,7 +106,7 @@ def preprocess_prompt(tokenizer, in_len, task):
 | 
			
		|||
        input_ids = tokenizer.encode(input_str, return_tensors="pt")    
 | 
			
		||||
    return input_ids
 | 
			
		||||
 | 
			
		||||
def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1, num_trials=3, num_beams=1, low_bit='sym_int4', cpu_embedding=False, batch_size=1, streaming=False, use_fp16_torch_dtype=False, n_gpu=2):
 | 
			
		||||
def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1, num_trials=3, num_beams=1, low_bit='sym_int4', cpu_embedding=False, batch_size=1, streaming=False, use_fp16_torch_dtype=False):
 | 
			
		||||
    # TODO: make a parameter
 | 
			
		||||
    result= {}
 | 
			
		||||
    if test_api == 'transformer_int4':
 | 
			
		||||
| 
						 | 
				
			
			@ -152,7 +152,7 @@ def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1,
 | 
			
		|||
    elif test_api == 'speculative_gpu':
 | 
			
		||||
        result = run_speculative_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, batch_size)
 | 
			
		||||
    elif test_api == 'pipeline_parallel_gpu':
 | 
			
		||||
        result = run_pipeline_parallel_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size, cpu_embedding, fp16=use_fp16_torch_dtype, n_gpu=n_gpu)
 | 
			
		||||
        result = run_pipeline_parallel_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size, cpu_embedding, fp16=use_fp16_torch_dtype)
 | 
			
		||||
    elif test_api == "transformer_int4_fp16_lookahead_gpu":
 | 
			
		||||
        result = run_transformer_int4_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size, cpu_embedding, fp16=True, lookahead=True)
 | 
			
		||||
    else:
 | 
			
		||||
| 
						 | 
				
			
			@ -1747,41 +1747,30 @@ def run_pipeline_parallel_gpu(repo_id,
 | 
			
		|||
                              low_bit,
 | 
			
		||||
                              batch_size,
 | 
			
		||||
                              cpu_embedding,
 | 
			
		||||
                              fp16=False,
 | 
			
		||||
                              n_gpu=2):
 | 
			
		||||
    from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
 | 
			
		||||
                              fp16=False):
 | 
			
		||||
    from ipex_llm.transformers import AutoModel, AutoModelForCausalLM, init_pipeline_parallel
 | 
			
		||||
    from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer
 | 
			
		||||
    init_pipeline_parallel()
 | 
			
		||||
    model_path = get_model_path(repo_id, local_model_hub)
 | 
			
		||||
    pipeline_parallel_stages = torch.distributed.get_world_size()
 | 
			
		||||
    # Load model in 4 bit,
 | 
			
		||||
    # which convert the relevant layers in the model into INT4 format
 | 
			
		||||
    st = time.perf_counter()
 | 
			
		||||
    origin_repo_id = repo_id.replace("-4bit", "")
 | 
			
		||||
    if origin_repo_id in CHATGLM_IDS:
 | 
			
		||||
        if "4bit" in repo_id:
 | 
			
		||||
            model = AutoModel.load_low_bit(model_path, optimize_model=True,
 | 
			
		||||
                                            trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding).eval()  
 | 
			
		||||
        else:
 | 
			
		||||
        model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True,
 | 
			
		||||
                                            trust_remote_code=True, use_cache=True).eval()
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, cpu_embedding=cpu_embedding)
 | 
			
		||||
                                          trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding,
 | 
			
		||||
                                          pipeline_parallel_stages=pipeline_parallel_stages).eval()
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
    elif origin_repo_id in LLAMA_IDS:
 | 
			
		||||
        model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True,
 | 
			
		||||
                                                     use_cache=True, cpu_embedding=cpu_embedding).eval()
 | 
			
		||||
        model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True,
 | 
			
		||||
                                                     trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding,
 | 
			
		||||
                                                     pipeline_parallel_stages=pipeline_parallel_stages).eval()
 | 
			
		||||
        tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
    else:
 | 
			
		||||
        if "4bit" in repo_id:
 | 
			
		||||
            model = AutoModelForCausalLM.load_low_bit(model_path, optimize_model=True,
 | 
			
		||||
                                            trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding).eval()
 | 
			
		||||
        else:
 | 
			
		||||
            if 'starcoder' in repo_id:
 | 
			
		||||
                # Load starcoder-15.5b model in bf16 format to avoid CPU OOM.
 | 
			
		||||
                model = AutoModelForCausalLM.from_pretrained(model_path, optimize_model=True, load_in_low_bit=low_bit,
 | 
			
		||||
                                                            trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding, torch_dtype=torch.bfloat16).eval()
 | 
			
		||||
                # Convert the low-bit model back to fp32 for performance considerations.
 | 
			
		||||
                model = model.float()
 | 
			
		||||
            else:
 | 
			
		||||
                model = AutoModelForCausalLM.from_pretrained(model_path, optimize_model=True, load_in_low_bit=low_bit,
 | 
			
		||||
                                                            trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding).eval()
 | 
			
		||||
        model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True,
 | 
			
		||||
                                                     trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding,
 | 
			
		||||
                                                     pipeline_parallel_stages=pipeline_parallel_stages).eval()
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
 | 
			
		||||
    if fp16:
 | 
			
		||||
| 
						 | 
				
			
			@ -1792,29 +1781,8 @@ def run_pipeline_parallel_gpu(repo_id,
 | 
			
		|||
    load_time = end - st
 | 
			
		||||
    print(">> loading of model costs {}s and {}GB".format(load_time, torch.xpu.memory.memory_reserved()/(1024**3)))
 | 
			
		||||
 | 
			
		||||
    model_layers = ['model.embed_tokens']
 | 
			
		||||
    for i in range(model.config.num_hidden_layers):
 | 
			
		||||
        model_layers.append(f'model.layers.{i}')
 | 
			
		||||
    model_layers = model_layers + ['model.norm', 'lm_head']
 | 
			
		||||
 | 
			
		||||
    device_map = {}
 | 
			
		||||
    split_len = len(model_layers) // n_gpu
 | 
			
		||||
    for i in range(n_gpu):
 | 
			
		||||
        device_map.update({key: f'xpu:{i}' for key in model_layers[split_len * i: split_len * (i + 1)]})
 | 
			
		||||
        if i == n_gpu - 1:
 | 
			
		||||
            device_map.update({key: f'xpu:{i}' for key in model_layers[split_len * (i + 1): ]})
 | 
			
		||||
    print(f">> device map: {device_map}")
 | 
			
		||||
 | 
			
		||||
    from accelerate import dispatch_model
 | 
			
		||||
    model = dispatch_model(
 | 
			
		||||
        model,
 | 
			
		||||
        device_map=device_map,
 | 
			
		||||
        offload_dir=None,
 | 
			
		||||
        skip_keys=["past_key_value", "past_key_values"],
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    model = BenchmarkWrapper(model)
 | 
			
		||||
    result = {}
 | 
			
		||||
    local_rank = torch.distributed.get_rank()
 | 
			
		||||
    with torch.inference_mode():
 | 
			
		||||
        for in_out in in_out_pairs:
 | 
			
		||||
            in_out_len = in_out.split("-")
 | 
			
		||||
| 
						 | 
				
			
			@ -1833,7 +1801,7 @@ def run_pipeline_parallel_gpu(repo_id,
 | 
			
		|||
            input_ids = input_ids[:, :in_len]
 | 
			
		||||
            true_str = tokenizer.batch_decode(input_ids)[0]
 | 
			
		||||
            input_list = [true_str] * batch_size
 | 
			
		||||
            input_ids = tokenizer(input_list, return_tensors="pt").input_ids.to('xpu:0')
 | 
			
		||||
            input_ids = tokenizer(input_list, return_tensors="pt").input_ids.to(f'xpu:{local_rank}')
 | 
			
		||||
            actual_in_len = input_ids.shape[1]
 | 
			
		||||
            result[in_out] = []
 | 
			
		||||
            for i in range(num_trials + warm_up):
 | 
			
		||||
| 
						 | 
				
			
			@ -1849,8 +1817,8 @@ def run_pipeline_parallel_gpu(repo_id,
 | 
			
		|||
                print(output[0])
 | 
			
		||||
                torch.xpu.empty_cache()
 | 
			
		||||
                if i >= warm_up:
 | 
			
		||||
                    result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
 | 
			
		||||
                                           actual_in_len, actual_out_len, load_time, model.peak_memory, fp16])
 | 
			
		||||
                    result[in_out].append([model.first_token_time, model.rest_cost_mean, 0,
 | 
			
		||||
                                           actual_in_len, actual_out_len, load_time,])
 | 
			
		||||
    del model
 | 
			
		||||
    torch.xpu.empty_cache()
 | 
			
		||||
    return result
 | 
			
		||||
| 
						 | 
				
			
			@ -1865,13 +1833,10 @@ if __name__ == '__main__':
 | 
			
		|||
        excludes = conf['exclude']
 | 
			
		||||
    streaming = False
 | 
			
		||||
    use_fp16_torch_dtype = False
 | 
			
		||||
    n_gpu = 2
 | 
			
		||||
    if 'streaming' in conf:
 | 
			
		||||
        streaming = conf['streaming']
 | 
			
		||||
    if 'use_fp16_torch_dtype' in conf:
 | 
			
		||||
        use_fp16_torch_dtype = conf['use_fp16_torch_dtype']
 | 
			
		||||
    if 'n_gpu' in conf:
 | 
			
		||||
        n_gpu = conf['n_gpu']
 | 
			
		||||
    
 | 
			
		||||
    import pandas as pd
 | 
			
		||||
    for api in conf.test_api:
 | 
			
		||||
| 
						 | 
				
			
			@ -1891,7 +1856,7 @@ if __name__ == '__main__':
 | 
			
		|||
                        if model_id_input in excludes or model_id_input_batch_size in excludes:
 | 
			
		||||
                            in_out_pairs.remove(in_out)
 | 
			
		||||
                run_model(model, api, in_out_pairs, conf['local_model_hub'], conf['warm_up'], conf['num_trials'], conf['num_beams'],
 | 
			
		||||
                      conf['low_bit'], conf['cpu_embedding'], batch_size, streaming, use_fp16_torch_dtype, n_gpu)
 | 
			
		||||
                      conf['low_bit'], conf['cpu_embedding'], batch_size, streaming, use_fp16_torch_dtype)
 | 
			
		||||
        df = pd.DataFrame(results, columns=['model', '1st token avg latency (ms)', '2+ avg latency (ms/token)', 'encoder time (ms)',
 | 
			
		||||
                                            'input/output tokens', 'batch_size', 'actual input/output tokens', 'num_beams', 'low_bit', 'cpu_embedding',
 | 
			
		||||
                                            'model loading time (s)', 'peak mem (GB)', 'streaming', 'use_fp16_torch_dtype'])
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -172,7 +172,7 @@ def pipeline_parallel_generate(self,
 | 
			
		|||
                           past_key_values=_past_key_values, use_cache=True)
 | 
			
		||||
        else:
 | 
			
		||||
            inputs_embeds = torch.empty(_input_ids.shape + (self.config.hidden_size,),
 | 
			
		||||
                                        device=f'xpu:{local_rank}', dtype=torch.float32)
 | 
			
		||||
                                        device=f'xpu:{local_rank}', dtype=self.dtype)
 | 
			
		||||
            dist.recv(inputs_embeds, src=pre_rank)
 | 
			
		||||
            outputs = self(input_ids=None, inputs_embeds=inputs_embeds,
 | 
			
		||||
                           past_key_values=_past_key_values, use_cache=True)
 | 
			
		||||
| 
						 | 
				
			
			@ -182,7 +182,7 @@ def pipeline_parallel_generate(self,
 | 
			
		|||
            next_ids = torch.argmax(logits[:, -1:, :], dim=-1)
 | 
			
		||||
            dist.broadcast(next_ids, src=local_rank)
 | 
			
		||||
        else:
 | 
			
		||||
            dist.send(outputs[0], dst=next_rank)
 | 
			
		||||
            dist.send(outputs[0].to(self.dtype), dst=next_rank)
 | 
			
		||||
            next_ids = torch.empty((bs, 1), device=f'xpu:{local_rank}', dtype=torch.int64)
 | 
			
		||||
            dist.broadcast(next_ids, src=self.pipeline_parallel_stages - 1)
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue