[LLM] add a llama2 gguf example (#9553)
This commit is contained in:
parent
7f6465518a
commit
66f5b45f57
2 changed files with 134 additions and 0 deletions
75
python/llm/example/CPU/GGUF-Models/llama2/README.md
Normal file
75
python/llm/example/CPU/GGUF-Models/llama2/README.md
Normal file
|
|
@ -0,0 +1,75 @@
|
||||||
|
# Llama2
|
||||||
|
In this directory, you will find examples on how you could load gguf Llama2 model and convert it to bigdl-llm model. For illustration purposes, we utilize the [llama-2-7b-chat.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF/tree/main) and [llama-2-7b-chat.Q4_1.gguf](https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF/tree/main) as reference Llama2 gguf models.
|
||||||
|
|
||||||
|
## Requirements
|
||||||
|
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
|
||||||
|
|
||||||
|
## Example: Load gguf model using `from_gguf()` API
|
||||||
|
In the example [generate.py](./generate.py), we show a basic use case to load a gguf Llama2 model and convert it to a bigdl-llm model using `from_gguf()` API, with BigDL-LLM optimizations.
|
||||||
|
|
||||||
|
### 1. Install
|
||||||
|
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).
|
||||||
|
|
||||||
|
After installing conda, create a Python environment for BigDL-LLM:
|
||||||
|
```bash
|
||||||
|
conda create -n llm python=3.9 # recommend to use Python 3.9
|
||||||
|
conda activate llm
|
||||||
|
|
||||||
|
pip install --pre --upgrade bigdl-llm[all] # install the latest bigdl-llm nightly build with 'all' option
|
||||||
|
```
|
||||||
|
|
||||||
|
### 2. Run
|
||||||
|
After setting up the Python environment, you could run the example by following steps.
|
||||||
|
|
||||||
|
#### 2.1 Client
|
||||||
|
On client Windows machines, it is recommended to run directly with full utilization of all cores:
|
||||||
|
```powershell
|
||||||
|
python ./generate.py --model <path_to_gguf_model> --prompt 'What is AI?'
|
||||||
|
```
|
||||||
|
More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
|
||||||
|
|
||||||
|
#### 2.2 Server
|
||||||
|
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
|
||||||
|
|
||||||
|
E.g. on Linux,
|
||||||
|
```bash
|
||||||
|
# set BigDL-LLM env variables
|
||||||
|
source bigdl-llm-init
|
||||||
|
|
||||||
|
# e.g. for a server with 48 cores per socket
|
||||||
|
export OMP_NUM_THREADS=48
|
||||||
|
numactl -C 0-47 -m 0 python ./generate.py --model <path_to_gguf_model> --prompt 'What is AI?'
|
||||||
|
```
|
||||||
|
More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
|
||||||
|
|
||||||
|
#### 2.3 Arguments Info
|
||||||
|
In the example, several arguments can be passed to satisfy your requirements:
|
||||||
|
|
||||||
|
- `--model`: path to gguf model, it should be a file with name like `llama-2-7b-chat.Q4_0.gguf`
|
||||||
|
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
|
||||||
|
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
|
||||||
|
|
||||||
|
#### 2.3 Sample Output
|
||||||
|
#### [llama-2-7b-chat.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF/tree/main)
|
||||||
|
```log
|
||||||
|
Inference time: xxxx s
|
||||||
|
-------------------- Output --------------------
|
||||||
|
### HUMAN:
|
||||||
|
What is AI?
|
||||||
|
|
||||||
|
### RESPONSE:
|
||||||
|
|
||||||
|
AI is a term used to describe a type of computer software that is designed to perform tasks that typically require human intelligence, such as visual perception, speech
|
||||||
|
```
|
||||||
|
|
||||||
|
#### [llama-2-7b-chat.Q4_1.gguf](https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF/tree/main)
|
||||||
|
```log
|
||||||
|
Inference time: xxxx s
|
||||||
|
-------------------- Output --------------------
|
||||||
|
### HUMAN:
|
||||||
|
What is AI?
|
||||||
|
|
||||||
|
### RESPONSE:
|
||||||
|
|
||||||
|
Artificial intelligence (AI) is the field of study focused on creating machines that can perform tasks that typically require human intelligence, such as understanding language,
|
||||||
|
```
|
||||||
59
python/llm/example/CPU/GGUF-Models/llama2/generate.py
Normal file
59
python/llm/example/CPU/GGUF-Models/llama2/generate.py
Normal file
|
|
@ -0,0 +1,59 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import time
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
from transformers import LlamaTokenizer
|
||||||
|
from bigdl.llm.transformers import AutoModelForCausalLM
|
||||||
|
|
||||||
|
# you could tune the prompt based on your own model,
|
||||||
|
# here the prompt tuning refers to https://huggingface.co/georgesung/llama2_7b_chat_uncensored#prompt-style
|
||||||
|
LLAMA2_PROMPT_FORMAT = """### HUMAN:
|
||||||
|
{prompt}
|
||||||
|
|
||||||
|
### RESPONSE:
|
||||||
|
"""
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama2 model')
|
||||||
|
parser.add_argument('--model', type=str, required=True,
|
||||||
|
help='Path to a gguf model')
|
||||||
|
parser.add_argument('--prompt', type=str, default="What is AI?",
|
||||||
|
help='Prompt to infer')
|
||||||
|
parser.add_argument('--n-predict', type=int, default=32,
|
||||||
|
help='Max tokens to predict')
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
model_path = args.model
|
||||||
|
|
||||||
|
# Load gguf model and vocab, then convert them to bigdl-llm model and huggingface tokenizer
|
||||||
|
model, tokenizer = AutoModelForCausalLM.from_gguf(model_path)
|
||||||
|
|
||||||
|
# Generate predicted tokens
|
||||||
|
with torch.inference_mode():
|
||||||
|
prompt = LLAMA2_PROMPT_FORMAT.format(prompt=args.prompt)
|
||||||
|
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
||||||
|
st = time.time()
|
||||||
|
output = model.generate(input_ids,
|
||||||
|
max_new_tokens=args.n_predict)
|
||||||
|
end = time.time()
|
||||||
|
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
|
||||||
|
print(f'Inference time: {end-st} s')
|
||||||
|
print('-'*20, 'Output', '-'*20)
|
||||||
|
print(output_str)
|
||||||
Loading…
Reference in a new issue