diff --git a/python/llm/example/CPU/GGUF-Models/llama2/README.md b/python/llm/example/CPU/GGUF-Models/llama2/README.md new file mode 100644 index 00000000..ea0f5051 --- /dev/null +++ b/python/llm/example/CPU/GGUF-Models/llama2/README.md @@ -0,0 +1,75 @@ +# Llama2 +In this directory, you will find examples on how you could load gguf Llama2 model and convert it to bigdl-llm model. For illustration purposes, we utilize the [llama-2-7b-chat.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF/tree/main) and [llama-2-7b-chat.Q4_1.gguf](https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF/tree/main) as reference Llama2 gguf models. + +## Requirements +To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information. + +## Example: Load gguf model using `from_gguf()` API +In the example [generate.py](./generate.py), we show a basic use case to load a gguf Llama2 model and convert it to a bigdl-llm model using `from_gguf()` API, with BigDL-LLM optimizations. + +### 1. Install +We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#). + +After installing conda, create a Python environment for BigDL-LLM: +```bash +conda create -n llm python=3.9 # recommend to use Python 3.9 +conda activate llm + +pip install --pre --upgrade bigdl-llm[all] # install the latest bigdl-llm nightly build with 'all' option +``` + +### 2. Run +After setting up the Python environment, you could run the example by following steps. + +#### 2.1 Client +On client Windows machines, it is recommended to run directly with full utilization of all cores: +```powershell +python ./generate.py --model --prompt 'What is AI?' +``` +More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section. + +#### 2.2 Server +For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket. + +E.g. on Linux, +```bash +# set BigDL-LLM env variables +source bigdl-llm-init + +# e.g. for a server with 48 cores per socket +export OMP_NUM_THREADS=48 +numactl -C 0-47 -m 0 python ./generate.py --model --prompt 'What is AI?' +``` +More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section. + +#### 2.3 Arguments Info +In the example, several arguments can be passed to satisfy your requirements: + +- `--model`: path to gguf model, it should be a file with name like `llama-2-7b-chat.Q4_0.gguf` +- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`. +- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. + +#### 2.3 Sample Output +#### [llama-2-7b-chat.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF/tree/main) +```log +Inference time: xxxx s +-------------------- Output -------------------- +### HUMAN: +What is AI? + +### RESPONSE: + +AI is a term used to describe a type of computer software that is designed to perform tasks that typically require human intelligence, such as visual perception, speech +``` + +#### [llama-2-7b-chat.Q4_1.gguf](https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF/tree/main) +```log +Inference time: xxxx s +-------------------- Output -------------------- +### HUMAN: +What is AI? + +### RESPONSE: + +Artificial intelligence (AI) is the field of study focused on creating machines that can perform tasks that typically require human intelligence, such as understanding language, +``` \ No newline at end of file diff --git a/python/llm/example/CPU/GGUF-Models/llama2/generate.py b/python/llm/example/CPU/GGUF-Models/llama2/generate.py new file mode 100644 index 00000000..a1f19354 --- /dev/null +++ b/python/llm/example/CPU/GGUF-Models/llama2/generate.py @@ -0,0 +1,59 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +import torch +import time +import argparse + +from transformers import LlamaTokenizer +from bigdl.llm.transformers import AutoModelForCausalLM + +# you could tune the prompt based on your own model, +# here the prompt tuning refers to https://huggingface.co/georgesung/llama2_7b_chat_uncensored#prompt-style +LLAMA2_PROMPT_FORMAT = """### HUMAN: +{prompt} + +### RESPONSE: +""" + +if __name__ == '__main__': + parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama2 model') + parser.add_argument('--model', type=str, required=True, + help='Path to a gguf model') + parser.add_argument('--prompt', type=str, default="What is AI?", + help='Prompt to infer') + parser.add_argument('--n-predict', type=int, default=32, + help='Max tokens to predict') + + args = parser.parse_args() + + model_path = args.model + + # Load gguf model and vocab, then convert them to bigdl-llm model and huggingface tokenizer + model, tokenizer = AutoModelForCausalLM.from_gguf(model_path) + + # Generate predicted tokens + with torch.inference_mode(): + prompt = LLAMA2_PROMPT_FORMAT.format(prompt=args.prompt) + input_ids = tokenizer.encode(prompt, return_tensors="pt") + st = time.time() + output = model.generate(input_ids, + max_new_tokens=args.n_predict) + end = time.time() + output_str = tokenizer.decode(output[0], skip_special_tokens=True) + print(f'Inference time: {end-st} s') + print('-'*20, 'Output', '-'*20) + print(output_str) \ No newline at end of file