Add unit tests for optimized model correctness (#9151)

* Add test to check correctness of optimized model

* Refactor optimized model test

* Use models in llm-unit-test

* Use AutoTokenizer for bloom

* Print out each passed test

* Remove unused tokenizer from import
This commit is contained in:
Cheen Hau, 俊豪 2023-10-17 14:46:41 +08:00 committed by GitHub
parent d946bd7c55
commit 66c2e45634
2 changed files with 60 additions and 2 deletions

View file

@ -0,0 +1,58 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import pytest
import os
from bigdl.llm.transformers import AutoModelForCausalLM, AutoModel
from transformers import LlamaTokenizer, AutoTokenizer
llama_model_path = os.environ.get('LLAMA_ORIGIN_PATH')
bloom_model_path = os.environ.get('BLOOM_ORIGIN_PATH')
chatglm2_6b_model_path = os.environ.get('ORIGINAL_CHATGLM2_6B_PATH')
replit_code_model_path = os.environ.get('ORIGINAL_REPLIT_CODE_PATH')
prompt = "Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun"
@pytest.mark.parametrize("Model, Tokenizer, model_path, prompt", [
(AutoModelForCausalLM, LlamaTokenizer, llama_model_path, prompt),
(AutoModelForCausalLM, AutoTokenizer, bloom_model_path, prompt),
(AutoModel, AutoTokenizer, chatglm2_6b_model_path, prompt),
(AutoModelForCausalLM, AutoTokenizer, replit_code_model_path, prompt),
])
def test_optimize_model(Model, Tokenizer, model_path, prompt):
tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True)
input_ids = tokenizer.encode(prompt, return_tensors="pt")
model = Model.from_pretrained(model_path,
load_in_4bit=True,
optimize_model=False,
trust_remote_code=True)
logits_base_model = (model(input_ids)).logits
model = Model.from_pretrained(model_path,
load_in_4bit=True,
optimize_model=True,
trust_remote_code=True)
logits_optimized_model = (model(input_ids)).logits
diff = abs(logits_base_model - logits_optimized_model).flatten()
assert any(diff) is False
if __name__ == '__main__':
pytest.main([__file__])

View file

@ -9,13 +9,13 @@ set -e
echo "# Start testing inference"
start=$(date "+%s")
python -m pytest -s ${LLM_INFERENCE_TEST_DIR} -k "not test_transformers"
python -m pytest -s ${LLM_INFERENCE_TEST_DIR} -k "not test_transformers" -v
if [ -z "$THREAD_NUM" ]; then
THREAD_NUM=2
fi
export OMP_NUM_THREADS=$THREAD_NUM
python -m pytest -s ${LLM_INFERENCE_TEST_DIR} -k test_transformers
python -m pytest -s ${LLM_INFERENCE_TEST_DIR} -k test_transformers -v
now=$(date "+%s")
time=$((now-start))