LLM: add CPU More-Data-Types and Save-Load examples (#9179)

This commit is contained in:
Jin Qiao 2023-10-17 14:38:52 +08:00 committed by GitHub
parent c0497ab41b
commit d946bd7c55
6 changed files with 268 additions and 0 deletions

View file

@ -0,0 +1,54 @@
# BigDL-LLM Low Bit Optimization for Large Language Model
In this example, we show how to apply BigDL-LLM low-bit optimizations (including INT8/INT5/INT4) to Llama2 model, and then run inference on the optimized low-bit model.
## 0. Requirements
To run this example with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../../README.md#system-support) for more information.
## Example: Load Model in Low-Bit Optimization
In the example [generate.py](./generate.py), we show a basic use case of low-bit optimizations (including INT8/INT5/INT4) on a Llama2 model to predict the next N tokens using `generate()` API. By specifying `--low-bit` argument, you could apply other low-bit optimization (e.g. INT8/INT5) on model.
### 1. Install
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.9
conda activate llm
pip install --pre --upgrade bigdl-llm[all] # install bigdl-llm with 'all' option
```
### 2. Run
Following command will load model in symmetric int 8 optimization:
```
python ./generate.py --low-bit sym_int8
```
In the example, several arguments can be passed to satisfy your requirements:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Llama2 model (e.g. `meta-llama/Llama-2-7b-chat-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'meta-llama/Llama-2-7b-chat-hf'`.
- `--low-bit`: argument defining the low-bit optimization data type, options are sym_int4, asym_int4, sym_int5, asym_int5 or sym_int8. (sym_int4 means symmetric int 4, asym_int4 means asymmetric int 4, etc.). Relevant low bit optimizations will be applied to the model. It is default to be `sym_int8`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
### 3 Sample Output
#### [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)
```log
Inference time: xxxx s
-------------------- Output --------------------
### HUMAN:
What is AI?
### RESPONSE:
AI is a term used to describe the development of computer systems that can perform tasks that typically require human intelligence, such as understanding natural language, recognizing images
```
#### [meta-llama/Llama-2-13b-chat-hf](https://huggingface.co/meta-llama/Llama-2-13b-chat-hf)
```log
Inference time: xxxx s
-------------------- Output --------------------
### HUMAN:
What is AI?
### RESPONSE:
AI, or artificial intelligence, refers to the ability of machines to perform tasks that would normally require human intelligence, such as learning, problem-solving,
```

View file

@ -0,0 +1,71 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import time
import argparse
from transformers import AutoModelForCausalLM, LlamaTokenizer
from bigdl.llm import optimize_model
# you could tune the prompt based on your own model,
# here the prompt tuning refers to https://huggingface.co/georgesung/llama2_7b_chat_uncensored#prompt-style
LLAMA2_PROMPT_FORMAT = """### HUMAN:
{prompt}
### RESPONSE:
"""
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Example of applying low-bit optimizations on model')
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf",
help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--low-bit', type=str, default="sym_int8",
choices=['sym_int4', 'asym_int4', 'sym_int5', 'asym_int5', 'sym_int8'],
help='The quantization type the model will convert to.')
parser.add_argument('--prompt', type=str, default="What is AI?",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
low_bit = args.low_bit
# Load model
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True)
# With only one line to enable BigDL-LLM optimization on model
# `low_bit` param support `sym_int4`, `asym_int4`, `sym_int5`, `asym_int5` and `sym_int8`
# By specifying `low_bit` param, relevant low bit optimizations will be applied to the model
model = optimize_model(model, low_bit=low_bit)
# Load tokenizer
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
# Generate predicted tokens
with torch.inference_mode():
prompt = LLAMA2_PROMPT_FORMAT.format(prompt=args.prompt)
input_ids = tokenizer.encode(prompt, return_tensors="pt")
st = time.time()
output = model.generate(input_ids,
max_new_tokens=args.n_predict)
end = time.time()
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
print(f'Inference time: {end-st} s')
print('-'*20, 'Output', '-'*20)
print(output_str)

View file

@ -0,0 +1,62 @@
# Save/Load Low-Bit Models with BigDL-LLM Optimizations
In this example, we show how to save/load model with BigDL-LLM low-bit optimizations (including INT8/INT5/INT4), and then run inference on the optimized low-bit model.
## 0. Requirements
To run this example with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../../README.md#system-support) for more information.
## Example: Save/Load Model in Low-Bit Optimization
In the example [generate.py](./generate.py), we show a basic use case of saving/loading model in low-bit optimizations to predict the next N tokens using `generate()` API. Also, saving and loading operations are platform-independent, so you could run it on different platforms.
### 1. Install
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.9
conda activate llm
pip install --pre --upgrade bigdl-llm[all] # install bigdl-llm with 'all' option
```
### 2. Run
If you want to save the optimized low-bit model, run:
```
python ./generate.py --save-path path/to/save/model
```
If you want to load the optimized low-bit model, run:
```
python ./generate.py --load-path path/to/load/model
```
In the example, several arguments can be passed to satisfy your requirements:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Llama2 model (e.g. `meta-llama/Llama-2-7b-chat-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'meta-llama/Llama-2-7b-chat-hf'`.
- `--low-bit`: argument defining the low-bit optimization data type, options are sym_int4, asym_int4, sym_int5, asym_int5 or sym_int8. (sym_int4 means symmetric int 4, asym_int4 means asymmetric int 4, etc.). Relevant low bit optimizations will be applied to the model.
- `--save-path`: argument defining the path to save the low-bit model. Then you can load the low-bit directly.
- `--load-path`: argument defining the path to load low-bit model.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
### 3 Sample Output
#### [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)
```log
Inference time: xxxx s
-------------------- Output --------------------
### HUMAN:
What is AI?
### RESPONSE:
AI is a term used to describe the development of computer systems that can perform tasks that typically require human intelligence, such as understanding natural language, recognizing images
```
#### [meta-llama/Llama-2-13b-chat-hf](https://huggingface.co/meta-llama/Llama-2-13b-chat-hf)
```log
Inference time: xxxx s
-------------------- Output --------------------
### HUMAN:
What is AI?
### RESPONSE:
AI, or artificial intelligence, refers to the ability of machines to perform tasks that would typically require human intelligence, such as learning, problem-solving,
```

View file

@ -0,0 +1,81 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import time
import argparse
from bigdl.llm import optimize_model
from bigdl.llm.optimize import low_memory_init, load_low_bit
from transformers import AutoModelForCausalLM, LlamaTokenizer
# you could tune the prompt based on your own model,
# here the prompt tuning refers to https://huggingface.co/georgesung/llama2_7b_chat_uncensored#prompt-style
LLAMA2_PROMPT_FORMAT = """### HUMAN:
{prompt}
### RESPONSE:
"""
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Example of saving and loading the optimized model')
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf",
help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--low-bit', type=str, default="sym_int4",
choices=['sym_int4', 'asym_int4', 'sym_int5', 'asym_int5', 'sym_int8'],
help='The quantization type the model will convert to.')
parser.add_argument('--save-path', type=str, default=None,
help='The path to save the low-bit model.')
parser.add_argument('--load-path', type=str, default=None,
help='The path to load the low-bit model.')
parser.add_argument('--prompt', type=str, default="What is AI?",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
low_bit = args.low_bit
load_path = args.load_path
if load_path:
# Fast and low cost by loading model on meta device
with low_memory_init():
model = AutoModelForCausalLM.from_pretrained(load_path, torch_dtype="auto", trust_remote_code=True)
model = load_low_bit(model, load_path)
tokenizer = LlamaTokenizer.from_pretrained(load_path)
else:
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True)
model = optimize_model(model, low_bit=low_bit)
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
# Generate predicted tokens
with torch.inference_mode():
prompt = LLAMA2_PROMPT_FORMAT.format(prompt=args.prompt)
input_ids = tokenizer.encode(prompt, return_tensors="pt")
st = time.time()
output = model.generate(input_ids,
max_new_tokens=args.n_predict)
end = time.time()
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
print(f'Inference time: {end-st} s')
print('-'*20, 'Output', '-'*20)
print(output_str)
save_path = args.save_path
if save_path:
model.save_low_bit(save_path)
tokenizer.save_pretrained(save_path)
print(f"Model and tokenizer are saved to {save_path}")