add basic llama 3.2 vision support (#12163)
This commit is contained in:
parent
9b75806d14
commit
644af2a76e
2 changed files with 88 additions and 0 deletions
|
|
@ -1279,6 +1279,16 @@ def _optimize_post(model, lightweight_bmm=False):
|
|||
convert_forward(model, module.LlamaMLP, mlp_silu_forward)
|
||||
convert_forward(model, module.LlamaModel, llama_model_forward)
|
||||
convert_forward(model, module.LlamaAttention, llama_attention_forward)
|
||||
elif model.config.model_type == "mllama":
|
||||
# llama 3.2 vision
|
||||
modeling_module_name = model.__class__.__module__
|
||||
module = importlib.import_module(modeling_module_name)
|
||||
from ipex_llm.transformers.models.common import rms_norm_forward
|
||||
from ipex_llm.transformers.models.common import mlp_silu_forward
|
||||
from ipex_llm.transformers.models.mllama import mllama_vision_attention_forward
|
||||
convert_forward(model, module.MllamaVisionAttention, mllama_vision_attention_forward)
|
||||
convert_forward(model, module.MllamaTextRMSNorm, rms_norm_forward)
|
||||
convert_forward(model, module.MllamaTextMLP, mlp_silu_forward)
|
||||
elif model.config.model_type == "llama":
|
||||
from transformers.models.llama.modeling_llama import LlamaRMSNorm
|
||||
from transformers.models.llama.modeling_llama import LlamaMLP
|
||||
|
|
|
|||
78
python/llm/src/ipex_llm/transformers/models/mllama.py
Normal file
78
python/llm/src/ipex_llm/transformers/models/mllama.py
Normal file
|
|
@ -0,0 +1,78 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
# Some parts of this file is adapted from
|
||||
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/mllama/modeling_mllama.py
|
||||
# which is licensed under Apache License 2.0:
|
||||
#
|
||||
# Copyright 2024 the HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import math
|
||||
import torch
|
||||
|
||||
from typing import Optional
|
||||
|
||||
|
||||
def mllama_vision_attention_forward(
|
||||
self,
|
||||
hidden_state: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
output_attentions: bool = None,
|
||||
):
|
||||
query = self.q_proj(hidden_state)
|
||||
key = self.k_proj(hidden_state)
|
||||
value = self.v_proj(hidden_state)
|
||||
|
||||
batch_size, q_seq_len, _ = query.shape
|
||||
_, kv_seq_len, _ = key.shape
|
||||
|
||||
query = query.view(batch_size, q_seq_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||||
key = key.view(batch_size, kv_seq_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||||
value = value.view(batch_size, kv_seq_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||||
|
||||
attn_weights = torch.matmul(query, key.transpose(2, 3)) / math.sqrt(self.head_dim)
|
||||
|
||||
if attention_mask is not None: # no matter the length, we just slice it
|
||||
causal_mask = attention_mask[:, :, :, : key.shape[-2]]
|
||||
attn_weights = attn_weights + causal_mask
|
||||
|
||||
# upcast attention to fp32
|
||||
from ipex_llm.transformers.models.common import attention_softmax
|
||||
attn_weights = attention_softmax(attn_weights, self.training)
|
||||
|
||||
attn_output = torch.matmul(attn_weights, value)
|
||||
|
||||
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||
attn_output = attn_output.reshape(batch_size, q_seq_len, -1)
|
||||
|
||||
output = self.o_proj(attn_output)
|
||||
|
||||
if not output_attentions:
|
||||
attn_weights = None
|
||||
|
||||
return output, attn_weights
|
||||
Loading…
Reference in a new issue