diff --git a/python/llm/src/ipex_llm/transformers/convert.py b/python/llm/src/ipex_llm/transformers/convert.py index 6ad0b983..0d25213a 100644 --- a/python/llm/src/ipex_llm/transformers/convert.py +++ b/python/llm/src/ipex_llm/transformers/convert.py @@ -1279,6 +1279,16 @@ def _optimize_post(model, lightweight_bmm=False): convert_forward(model, module.LlamaMLP, mlp_silu_forward) convert_forward(model, module.LlamaModel, llama_model_forward) convert_forward(model, module.LlamaAttention, llama_attention_forward) + elif model.config.model_type == "mllama": + # llama 3.2 vision + modeling_module_name = model.__class__.__module__ + module = importlib.import_module(modeling_module_name) + from ipex_llm.transformers.models.common import rms_norm_forward + from ipex_llm.transformers.models.common import mlp_silu_forward + from ipex_llm.transformers.models.mllama import mllama_vision_attention_forward + convert_forward(model, module.MllamaVisionAttention, mllama_vision_attention_forward) + convert_forward(model, module.MllamaTextRMSNorm, rms_norm_forward) + convert_forward(model, module.MllamaTextMLP, mlp_silu_forward) elif model.config.model_type == "llama": from transformers.models.llama.modeling_llama import LlamaRMSNorm from transformers.models.llama.modeling_llama import LlamaMLP diff --git a/python/llm/src/ipex_llm/transformers/models/mllama.py b/python/llm/src/ipex_llm/transformers/models/mllama.py new file mode 100644 index 00000000..69fae966 --- /dev/null +++ b/python/llm/src/ipex_llm/transformers/models/mllama.py @@ -0,0 +1,78 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# +# Some parts of this file is adapted from +# https://github.com/huggingface/transformers/blob/main/src/transformers/models/mllama/modeling_mllama.py +# which is licensed under Apache License 2.0: +# +# Copyright 2024 the HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import math +import torch + +from typing import Optional + + +def mllama_vision_attention_forward( + self, + hidden_state: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + output_attentions: bool = None, +): + query = self.q_proj(hidden_state) + key = self.k_proj(hidden_state) + value = self.v_proj(hidden_state) + + batch_size, q_seq_len, _ = query.shape + _, kv_seq_len, _ = key.shape + + query = query.view(batch_size, q_seq_len, self.num_heads, self.head_dim).transpose(1, 2) + key = key.view(batch_size, kv_seq_len, self.num_heads, self.head_dim).transpose(1, 2) + value = value.view(batch_size, kv_seq_len, self.num_heads, self.head_dim).transpose(1, 2) + + attn_weights = torch.matmul(query, key.transpose(2, 3)) / math.sqrt(self.head_dim) + + if attention_mask is not None: # no matter the length, we just slice it + causal_mask = attention_mask[:, :, :, : key.shape[-2]] + attn_weights = attn_weights + causal_mask + + # upcast attention to fp32 + from ipex_llm.transformers.models.common import attention_softmax + attn_weights = attention_softmax(attn_weights, self.training) + + attn_output = torch.matmul(attn_weights, value) + + attn_output = attn_output.transpose(1, 2).contiguous() + attn_output = attn_output.reshape(batch_size, q_seq_len, -1) + + output = self.o_proj(attn_output) + + if not output_attentions: + attn_weights = None + + return output, attn_weights