add basic llama 3.2 vision support (#12163)
This commit is contained in:
		
							parent
							
								
									9b75806d14
								
							
						
					
					
						commit
						644af2a76e
					
				
					 2 changed files with 88 additions and 0 deletions
				
			
		| 
						 | 
				
			
			@ -1279,6 +1279,16 @@ def _optimize_post(model, lightweight_bmm=False):
 | 
			
		|||
        convert_forward(model, module.LlamaMLP, mlp_silu_forward)
 | 
			
		||||
        convert_forward(model, module.LlamaModel, llama_model_forward)
 | 
			
		||||
        convert_forward(model, module.LlamaAttention, llama_attention_forward)
 | 
			
		||||
    elif model.config.model_type == "mllama":
 | 
			
		||||
        # llama 3.2 vision
 | 
			
		||||
        modeling_module_name = model.__class__.__module__
 | 
			
		||||
        module = importlib.import_module(modeling_module_name)
 | 
			
		||||
        from ipex_llm.transformers.models.common import rms_norm_forward
 | 
			
		||||
        from ipex_llm.transformers.models.common import mlp_silu_forward
 | 
			
		||||
        from ipex_llm.transformers.models.mllama import mllama_vision_attention_forward
 | 
			
		||||
        convert_forward(model, module.MllamaVisionAttention, mllama_vision_attention_forward)
 | 
			
		||||
        convert_forward(model, module.MllamaTextRMSNorm, rms_norm_forward)
 | 
			
		||||
        convert_forward(model, module.MllamaTextMLP, mlp_silu_forward)
 | 
			
		||||
    elif model.config.model_type == "llama":
 | 
			
		||||
        from transformers.models.llama.modeling_llama import LlamaRMSNorm
 | 
			
		||||
        from transformers.models.llama.modeling_llama import LlamaMLP
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										78
									
								
								python/llm/src/ipex_llm/transformers/models/mllama.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										78
									
								
								python/llm/src/ipex_llm/transformers/models/mllama.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,78 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
# Some parts of this file is adapted from
 | 
			
		||||
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/mllama/modeling_mllama.py
 | 
			
		||||
# which is licensed under Apache License 2.0:
 | 
			
		||||
#
 | 
			
		||||
# Copyright 2024 the HuggingFace Inc. team. All rights reserved.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
import math
 | 
			
		||||
import torch
 | 
			
		||||
 | 
			
		||||
from typing import Optional
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def mllama_vision_attention_forward(
 | 
			
		||||
    self,
 | 
			
		||||
    hidden_state: torch.Tensor,
 | 
			
		||||
    attention_mask: Optional[torch.Tensor] = None,
 | 
			
		||||
    output_attentions: bool = None,
 | 
			
		||||
):
 | 
			
		||||
    query = self.q_proj(hidden_state)
 | 
			
		||||
    key = self.k_proj(hidden_state)
 | 
			
		||||
    value = self.v_proj(hidden_state)
 | 
			
		||||
 | 
			
		||||
    batch_size, q_seq_len, _ = query.shape
 | 
			
		||||
    _, kv_seq_len, _ = key.shape
 | 
			
		||||
 | 
			
		||||
    query = query.view(batch_size, q_seq_len, self.num_heads, self.head_dim).transpose(1, 2)
 | 
			
		||||
    key = key.view(batch_size, kv_seq_len, self.num_heads, self.head_dim).transpose(1, 2)
 | 
			
		||||
    value = value.view(batch_size, kv_seq_len, self.num_heads, self.head_dim).transpose(1, 2)
 | 
			
		||||
 | 
			
		||||
    attn_weights = torch.matmul(query, key.transpose(2, 3)) / math.sqrt(self.head_dim)
 | 
			
		||||
 | 
			
		||||
    if attention_mask is not None:  # no matter the length, we just slice it
 | 
			
		||||
        causal_mask = attention_mask[:, :, :, : key.shape[-2]]
 | 
			
		||||
        attn_weights = attn_weights + causal_mask
 | 
			
		||||
 | 
			
		||||
    # upcast attention to fp32
 | 
			
		||||
    from ipex_llm.transformers.models.common import attention_softmax
 | 
			
		||||
    attn_weights = attention_softmax(attn_weights, self.training)
 | 
			
		||||
 | 
			
		||||
    attn_output = torch.matmul(attn_weights, value)
 | 
			
		||||
 | 
			
		||||
    attn_output = attn_output.transpose(1, 2).contiguous()
 | 
			
		||||
    attn_output = attn_output.reshape(batch_size, q_seq_len, -1)
 | 
			
		||||
 | 
			
		||||
    output = self.o_proj(attn_output)
 | 
			
		||||
 | 
			
		||||
    if not output_attentions:
 | 
			
		||||
        attn_weights = None
 | 
			
		||||
 | 
			
		||||
    return output, attn_weights
 | 
			
		||||
		Loading…
	
		Reference in a new issue