Merge branch 'intel-analytics:main' into MargarettMao-parent_folder
This commit is contained in:
commit
63a9a736be
295 changed files with 1756 additions and 600 deletions
2
.github/actions/llm/setup-llm-env/action.yml
vendored
2
.github/actions/llm/setup-llm-env/action.yml
vendored
|
|
@ -19,7 +19,7 @@ runs:
|
||||||
sed -i 's/"bigdl-core-xe==" + CORE_XE_VERSION + "/"bigdl-core-xe/g' python/llm/setup.py
|
sed -i 's/"bigdl-core-xe==" + CORE_XE_VERSION + "/"bigdl-core-xe/g' python/llm/setup.py
|
||||||
sed -i 's/"bigdl-core-xe-esimd==" + CORE_XE_VERSION + "/"bigdl-core-xe-esimd/g' python/llm/setup.py
|
sed -i 's/"bigdl-core-xe-esimd==" + CORE_XE_VERSION + "/"bigdl-core-xe-esimd/g' python/llm/setup.py
|
||||||
sed -i 's/"bigdl-core-xe-21==" + CORE_XE_VERSION/"bigdl-core-xe-21"/g' python/llm/setup.py
|
sed -i 's/"bigdl-core-xe-21==" + CORE_XE_VERSION/"bigdl-core-xe-21"/g' python/llm/setup.py
|
||||||
sed -i 's/"bigdl-core-xe-esimd-21==" + CORE_XE_VERSION + "/"bigdl-core-xe-esimd-21/g' python/llm/setup.py
|
sed -i 's/"bigdl-core-xe-esimd-21==" + CORE_XE_VERSION/"bigdl-core-xe-esimd-21"/g' python/llm/setup.py
|
||||||
|
|
||||||
pip install requests
|
pip install requests
|
||||||
if [[ ${{ runner.os }} == 'Linux' ]]; then
|
if [[ ${{ runner.os }} == 'Linux' ]]; then
|
||||||
|
|
|
||||||
10
.github/workflows/llm-c-evaluation.yml
vendored
10
.github/workflows/llm-c-evaluation.yml
vendored
|
|
@ -95,7 +95,7 @@ jobs:
|
||||||
strategy:
|
strategy:
|
||||||
fail-fast: false
|
fail-fast: false
|
||||||
matrix:
|
matrix:
|
||||||
python-version: ["3.9"]
|
python-version: ["3.11"]
|
||||||
model_name: ${{ fromJson(needs.set-matrix.outputs.model_name) }}
|
model_name: ${{ fromJson(needs.set-matrix.outputs.model_name) }}
|
||||||
precision: ${{ fromJson(needs.set-matrix.outputs.precision) }}
|
precision: ${{ fromJson(needs.set-matrix.outputs.precision) }}
|
||||||
device: [xpu]
|
device: [xpu]
|
||||||
|
|
@ -193,10 +193,10 @@ jobs:
|
||||||
runs-on: ubuntu-latest
|
runs-on: ubuntu-latest
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@v3
|
- uses: actions/checkout@v3
|
||||||
- name: Set up Python 3.9
|
- name: Set up Python 3.11
|
||||||
uses: actions/setup-python@v4
|
uses: actions/setup-python@v4
|
||||||
with:
|
with:
|
||||||
python-version: 3.9
|
python-version: 3.11
|
||||||
- name: Install dependencies
|
- name: Install dependencies
|
||||||
shell: bash
|
shell: bash
|
||||||
run: |
|
run: |
|
||||||
|
|
@ -230,10 +230,10 @@ jobs:
|
||||||
runs-on: ["self-hosted", "llm", "accuracy1", "accuracy-nightly"]
|
runs-on: ["self-hosted", "llm", "accuracy1", "accuracy-nightly"]
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@f43a0e5ff2bd294095638e18286ca9a3d1956744 # actions/checkout@v3
|
- uses: actions/checkout@f43a0e5ff2bd294095638e18286ca9a3d1956744 # actions/checkout@v3
|
||||||
- name: Set up Python 3.9
|
- name: Set up Python 3.11
|
||||||
uses: actions/setup-python@v4
|
uses: actions/setup-python@v4
|
||||||
with:
|
with:
|
||||||
python-version: 3.9
|
python-version: 3.11
|
||||||
- name: Install dependencies
|
- name: Install dependencies
|
||||||
shell: bash
|
shell: bash
|
||||||
run: |
|
run: |
|
||||||
|
|
|
||||||
12
.github/workflows/llm-harness-evaluation.yml
vendored
12
.github/workflows/llm-harness-evaluation.yml
vendored
|
|
@ -105,7 +105,7 @@ jobs:
|
||||||
strategy:
|
strategy:
|
||||||
fail-fast: false
|
fail-fast: false
|
||||||
matrix:
|
matrix:
|
||||||
python-version: ["3.9"]
|
python-version: ["3.11"]
|
||||||
model_name: ${{ fromJson(needs.set-matrix.outputs.model_name) }}
|
model_name: ${{ fromJson(needs.set-matrix.outputs.model_name) }}
|
||||||
task: ${{ fromJson(needs.set-matrix.outputs.task) }}
|
task: ${{ fromJson(needs.set-matrix.outputs.task) }}
|
||||||
precision: ${{ fromJson(needs.set-matrix.outputs.precision) }}
|
precision: ${{ fromJson(needs.set-matrix.outputs.precision) }}
|
||||||
|
|
@ -189,7 +189,7 @@ jobs:
|
||||||
fi
|
fi
|
||||||
|
|
||||||
python run_llb.py \
|
python run_llb.py \
|
||||||
--model bigdl-llm \
|
--model ipex-llm \
|
||||||
--pretrained ${MODEL_PATH} \
|
--pretrained ${MODEL_PATH} \
|
||||||
--precision ${{ matrix.precision }} \
|
--precision ${{ matrix.precision }} \
|
||||||
--device ${{ matrix.device }} \
|
--device ${{ matrix.device }} \
|
||||||
|
|
@ -216,10 +216,10 @@ jobs:
|
||||||
runs-on: ubuntu-latest
|
runs-on: ubuntu-latest
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@f43a0e5ff2bd294095638e18286ca9a3d1956744 # actions/checkout@v3
|
- uses: actions/checkout@f43a0e5ff2bd294095638e18286ca9a3d1956744 # actions/checkout@v3
|
||||||
- name: Set up Python 3.9
|
- name: Set up Python 3.11
|
||||||
uses: actions/setup-python@v4
|
uses: actions/setup-python@v4
|
||||||
with:
|
with:
|
||||||
python-version: 3.9
|
python-version: 3.11
|
||||||
- name: Install dependencies
|
- name: Install dependencies
|
||||||
shell: bash
|
shell: bash
|
||||||
run: |
|
run: |
|
||||||
|
|
@ -243,10 +243,10 @@ jobs:
|
||||||
runs-on: ["self-hosted", "llm", "accuracy1", "accuracy-nightly"]
|
runs-on: ["self-hosted", "llm", "accuracy1", "accuracy-nightly"]
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@f43a0e5ff2bd294095638e18286ca9a3d1956744 # actions/checkout@v3
|
- uses: actions/checkout@f43a0e5ff2bd294095638e18286ca9a3d1956744 # actions/checkout@v3
|
||||||
- name: Set up Python 3.9
|
- name: Set up Python 3.11
|
||||||
uses: actions/setup-python@v4
|
uses: actions/setup-python@v4
|
||||||
with:
|
with:
|
||||||
python-version: 3.9
|
python-version: 3.11
|
||||||
- name: Install dependencies
|
- name: Install dependencies
|
||||||
shell: bash
|
shell: bash
|
||||||
run: |
|
run: |
|
||||||
|
|
|
||||||
4
.github/workflows/llm-nightly-test.yml
vendored
4
.github/workflows/llm-nightly-test.yml
vendored
|
|
@ -34,10 +34,10 @@ jobs:
|
||||||
include:
|
include:
|
||||||
- os: windows
|
- os: windows
|
||||||
instruction: AVX-VNNI-UT
|
instruction: AVX-VNNI-UT
|
||||||
python-version: "3.9"
|
python-version: "3.11"
|
||||||
- os: ubuntu-20.04-lts
|
- os: ubuntu-20.04-lts
|
||||||
instruction: avx512
|
instruction: avx512
|
||||||
python-version: "3.9"
|
python-version: "3.11"
|
||||||
runs-on: [self-hosted, llm, "${{matrix.instruction}}", "${{matrix.os}}"]
|
runs-on: [self-hosted, llm, "${{matrix.instruction}}", "${{matrix.os}}"]
|
||||||
env:
|
env:
|
||||||
ANALYTICS_ZOO_ROOT: ${{ github.workspace }}
|
ANALYTICS_ZOO_ROOT: ${{ github.workspace }}
|
||||||
|
|
|
||||||
10
.github/workflows/llm-ppl-evaluation.yml
vendored
10
.github/workflows/llm-ppl-evaluation.yml
vendored
|
|
@ -104,7 +104,7 @@ jobs:
|
||||||
strategy:
|
strategy:
|
||||||
fail-fast: false
|
fail-fast: false
|
||||||
matrix:
|
matrix:
|
||||||
python-version: ["3.9"]
|
python-version: ["3.11"]
|
||||||
model_name: ${{ fromJson(needs.set-matrix.outputs.model_name) }}
|
model_name: ${{ fromJson(needs.set-matrix.outputs.model_name) }}
|
||||||
precision: ${{ fromJson(needs.set-matrix.outputs.precision) }}
|
precision: ${{ fromJson(needs.set-matrix.outputs.precision) }}
|
||||||
seq_len: ${{ fromJson(needs.set-matrix.outputs.seq_len) }}
|
seq_len: ${{ fromJson(needs.set-matrix.outputs.seq_len) }}
|
||||||
|
|
@ -201,10 +201,10 @@ jobs:
|
||||||
runs-on: ubuntu-latest
|
runs-on: ubuntu-latest
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@f43a0e5ff2bd294095638e18286ca9a3d1956744 # actions/checkout@v3
|
- uses: actions/checkout@f43a0e5ff2bd294095638e18286ca9a3d1956744 # actions/checkout@v3
|
||||||
- name: Set up Python 3.9
|
- name: Set up Python 3.11
|
||||||
uses: actions/setup-python@v4
|
uses: actions/setup-python@v4
|
||||||
with:
|
with:
|
||||||
python-version: 3.9
|
python-version: 3.11
|
||||||
- name: Install dependencies
|
- name: Install dependencies
|
||||||
shell: bash
|
shell: bash
|
||||||
run: |
|
run: |
|
||||||
|
|
@ -227,10 +227,10 @@ jobs:
|
||||||
runs-on: ["self-hosted", "llm", "accuracy1", "accuracy-nightly"]
|
runs-on: ["self-hosted", "llm", "accuracy1", "accuracy-nightly"]
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@f43a0e5ff2bd294095638e18286ca9a3d1956744 # actions/checkout@v3
|
- uses: actions/checkout@f43a0e5ff2bd294095638e18286ca9a3d1956744 # actions/checkout@v3
|
||||||
- name: Set up Python 3.9
|
- name: Set up Python 3.11
|
||||||
uses: actions/setup-python@v4
|
uses: actions/setup-python@v4
|
||||||
with:
|
with:
|
||||||
python-version: 3.9
|
python-version: 3.11
|
||||||
- name: Install dependencies
|
- name: Install dependencies
|
||||||
shell: bash
|
shell: bash
|
||||||
run: |
|
run: |
|
||||||
|
|
|
||||||
6
.github/workflows/llm-whisper-evaluation.yml
vendored
6
.github/workflows/llm-whisper-evaluation.yml
vendored
|
|
@ -81,7 +81,7 @@ jobs:
|
||||||
strategy:
|
strategy:
|
||||||
fail-fast: false
|
fail-fast: false
|
||||||
matrix:
|
matrix:
|
||||||
python-version: ["3.9"]
|
python-version: ["3.11"]
|
||||||
model_name: ${{ fromJson(needs.set-matrix.outputs.model_name) }}
|
model_name: ${{ fromJson(needs.set-matrix.outputs.model_name) }}
|
||||||
task: ${{ fromJson(needs.set-matrix.outputs.task) }}
|
task: ${{ fromJson(needs.set-matrix.outputs.task) }}
|
||||||
precision: ${{ fromJson(needs.set-matrix.outputs.precision) }}
|
precision: ${{ fromJson(needs.set-matrix.outputs.precision) }}
|
||||||
|
|
@ -158,10 +158,10 @@ jobs:
|
||||||
runs-on: ["self-hosted", "llm", "perf"]
|
runs-on: ["self-hosted", "llm", "perf"]
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@f43a0e5ff2bd294095638e18286ca9a3d1956744 # actions/checkout@v3
|
- uses: actions/checkout@f43a0e5ff2bd294095638e18286ca9a3d1956744 # actions/checkout@v3
|
||||||
- name: Set up Python 3.9
|
- name: Set up Python 3.11
|
||||||
uses: actions/setup-python@v4
|
uses: actions/setup-python@v4
|
||||||
with:
|
with:
|
||||||
python-version: 3.9
|
python-version: 3.11
|
||||||
|
|
||||||
- name: Set output path
|
- name: Set output path
|
||||||
shell: bash
|
shell: bash
|
||||||
|
|
|
||||||
2
.github/workflows/llm_example_tests.yml
vendored
2
.github/workflows/llm_example_tests.yml
vendored
|
|
@ -39,7 +39,7 @@ jobs:
|
||||||
strategy:
|
strategy:
|
||||||
fail-fast: false
|
fail-fast: false
|
||||||
matrix:
|
matrix:
|
||||||
python-version: ["3.9"]
|
python-version: ["3.11"]
|
||||||
instruction: ["AVX512"]
|
instruction: ["AVX512"]
|
||||||
runs-on: [ self-hosted, llm,"${{matrix.instruction}}", ubuntu-20.04-lts ]
|
runs-on: [ self-hosted, llm,"${{matrix.instruction}}", ubuntu-20.04-lts ]
|
||||||
env:
|
env:
|
||||||
|
|
|
||||||
12
.github/workflows/llm_performance_tests.yml
vendored
12
.github/workflows/llm_performance_tests.yml
vendored
|
|
@ -33,7 +33,7 @@ jobs:
|
||||||
strategy:
|
strategy:
|
||||||
fail-fast: false
|
fail-fast: false
|
||||||
matrix:
|
matrix:
|
||||||
python-version: ["3.9"]
|
python-version: ["3.11"]
|
||||||
runs-on: [self-hosted, llm, perf]
|
runs-on: [self-hosted, llm, perf]
|
||||||
env:
|
env:
|
||||||
OMP_NUM_THREADS: 16
|
OMP_NUM_THREADS: 16
|
||||||
|
|
@ -163,7 +163,7 @@ jobs:
|
||||||
strategy:
|
strategy:
|
||||||
fail-fast: false
|
fail-fast: false
|
||||||
matrix:
|
matrix:
|
||||||
python-version: ["3.9"]
|
python-version: ["3.11"]
|
||||||
runs-on: [self-hosted, llm, spr-perf]
|
runs-on: [self-hosted, llm, spr-perf]
|
||||||
env:
|
env:
|
||||||
OMP_NUM_THREADS: 16
|
OMP_NUM_THREADS: 16
|
||||||
|
|
@ -238,10 +238,10 @@ jobs:
|
||||||
include:
|
include:
|
||||||
- os: windows
|
- os: windows
|
||||||
platform: dp
|
platform: dp
|
||||||
python-version: "3.9"
|
python-version: "3.11"
|
||||||
# - os: windows
|
# - os: windows
|
||||||
# platform: lp
|
# platform: lp
|
||||||
# python-version: "3.9"
|
# python-version: "3.11"
|
||||||
runs-on: [self-hosted, "${{ matrix.os }}", llm, perf-core, "${{ matrix.platform }}"]
|
runs-on: [self-hosted, "${{ matrix.os }}", llm, perf-core, "${{ matrix.platform }}"]
|
||||||
env:
|
env:
|
||||||
ANALYTICS_ZOO_ROOT: ${{ github.workspace }}
|
ANALYTICS_ZOO_ROOT: ${{ github.workspace }}
|
||||||
|
|
@ -309,7 +309,7 @@ jobs:
|
||||||
matrix:
|
matrix:
|
||||||
include:
|
include:
|
||||||
- os: windows
|
- os: windows
|
||||||
python-version: "3.9"
|
python-version: "3.11"
|
||||||
runs-on: [self-hosted, "${{ matrix.os }}", llm, perf-igpu]
|
runs-on: [self-hosted, "${{ matrix.os }}", llm, perf-igpu]
|
||||||
env:
|
env:
|
||||||
ANALYTICS_ZOO_ROOT: ${{ github.workspace }}
|
ANALYTICS_ZOO_ROOT: ${{ github.workspace }}
|
||||||
|
|
@ -380,7 +380,7 @@ jobs:
|
||||||
- name: Create env for html generation
|
- name: Create env for html generation
|
||||||
shell: cmd
|
shell: cmd
|
||||||
run: |
|
run: |
|
||||||
call conda create -n html-gen python=3.9 -y
|
call conda create -n html-gen python=3.11 -y
|
||||||
call conda activate html-gen
|
call conda activate html-gen
|
||||||
|
|
||||||
pip install pandas==1.5.3
|
pip install pandas==1.5.3
|
||||||
|
|
|
||||||
|
|
@ -30,7 +30,7 @@ jobs:
|
||||||
strategy:
|
strategy:
|
||||||
fail-fast: false
|
fail-fast: false
|
||||||
matrix:
|
matrix:
|
||||||
python-version: ["3.9"]
|
python-version: ["3.11"]
|
||||||
runs-on: [self-hosted, llm, perf]
|
runs-on: [self-hosted, llm, perf]
|
||||||
env:
|
env:
|
||||||
OMP_NUM_THREADS: 16
|
OMP_NUM_THREADS: 16
|
||||||
|
|
@ -154,7 +154,7 @@ jobs:
|
||||||
strategy:
|
strategy:
|
||||||
fail-fast: false
|
fail-fast: false
|
||||||
matrix:
|
matrix:
|
||||||
python-version: ["3.9"]
|
python-version: ["3.11"]
|
||||||
runs-on: [self-hosted, llm, perf]
|
runs-on: [self-hosted, llm, perf]
|
||||||
env:
|
env:
|
||||||
OMP_NUM_THREADS: 16
|
OMP_NUM_THREADS: 16
|
||||||
|
|
|
||||||
|
|
@ -29,7 +29,7 @@ jobs:
|
||||||
strategy:
|
strategy:
|
||||||
fail-fast: false
|
fail-fast: false
|
||||||
matrix:
|
matrix:
|
||||||
python-version: ["3.9"]
|
python-version: ["3.11"]
|
||||||
runs-on: [self-hosted, llm, spr01-perf]
|
runs-on: [self-hosted, llm, spr01-perf]
|
||||||
env:
|
env:
|
||||||
OMP_NUM_THREADS: 16
|
OMP_NUM_THREADS: 16
|
||||||
|
|
@ -87,7 +87,7 @@ jobs:
|
||||||
strategy:
|
strategy:
|
||||||
fail-fast: false
|
fail-fast: false
|
||||||
matrix:
|
matrix:
|
||||||
python-version: ["3.9"]
|
python-version: ["3.11"]
|
||||||
runs-on: [self-hosted, llm, spr01-perf]
|
runs-on: [self-hosted, llm, spr01-perf]
|
||||||
env:
|
env:
|
||||||
OMP_NUM_THREADS: 16
|
OMP_NUM_THREADS: 16
|
||||||
|
|
|
||||||
4
.github/workflows/llm_unit_tests.yml
vendored
4
.github/workflows/llm_unit_tests.yml
vendored
|
|
@ -51,7 +51,7 @@ jobs:
|
||||||
if [ ${{ github.event_name }} == 'schedule' ]; then
|
if [ ${{ github.event_name }} == 'schedule' ]; then
|
||||||
python_version='["3.9", "3.10", "3.11"]'
|
python_version='["3.9", "3.10", "3.11"]'
|
||||||
else
|
else
|
||||||
python_version='["3.9"]'
|
python_version='["3.11"]'
|
||||||
fi
|
fi
|
||||||
list=$(echo ${python_version} | jq -c)
|
list=$(echo ${python_version} | jq -c)
|
||||||
echo "python-version=${list}" >> "$GITHUB_OUTPUT"
|
echo "python-version=${list}" >> "$GITHUB_OUTPUT"
|
||||||
|
|
@ -224,6 +224,7 @@ jobs:
|
||||||
run: |
|
run: |
|
||||||
pip install llama-index-readers-file llama-index-vector-stores-postgres llama-index-embeddings-huggingface
|
pip install llama-index-readers-file llama-index-vector-stores-postgres llama-index-embeddings-huggingface
|
||||||
pip install transformers==4.31.0
|
pip install transformers==4.31.0
|
||||||
|
pip install "pydantic>=2.0.0"
|
||||||
bash python/llm/test/run-llm-llamaindex-tests.sh
|
bash python/llm/test/run-llm-llamaindex-tests.sh
|
||||||
llm-unit-test-on-arc:
|
llm-unit-test-on-arc:
|
||||||
needs: [setup-python-version, llm-cpp-build]
|
needs: [setup-python-version, llm-cpp-build]
|
||||||
|
|
@ -398,4 +399,5 @@ jobs:
|
||||||
pip install --pre --upgrade ipex-llm[xpu_2.0] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/cn/
|
pip install --pre --upgrade ipex-llm[xpu_2.0] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/cn/
|
||||||
source /home/arda/intel/oneapi/setvars.sh
|
source /home/arda/intel/oneapi/setvars.sh
|
||||||
fi
|
fi
|
||||||
|
pip install "pydantic>=2.0.0"
|
||||||
bash python/llm/test/run-llm-llamaindex-tests-gpu.sh
|
bash python/llm/test/run-llm-llamaindex-tests-gpu.sh
|
||||||
|
|
@ -7,7 +7,7 @@
|
||||||
**`IPEX-LLM`** is a PyTorch library for running **LLM** on Intel CPU and GPU *(e.g., local PC with iGPU, discrete GPU such as Arc, Flex and Max)* with very low latency[^1].
|
**`IPEX-LLM`** is a PyTorch library for running **LLM** on Intel CPU and GPU *(e.g., local PC with iGPU, discrete GPU such as Arc, Flex and Max)* with very low latency[^1].
|
||||||
> [!NOTE]
|
> [!NOTE]
|
||||||
> - *It is built on top of **Intel Extension for PyTorch** (**`IPEX`**), as well as the excellent work of **`llama.cpp`**, **`bitsandbytes`**, **`vLLM`**, **`qlora`**, **`AutoGPTQ`**, **`AutoAWQ`**, etc.*
|
> - *It is built on top of **Intel Extension for PyTorch** (**`IPEX`**), as well as the excellent work of **`llama.cpp`**, **`bitsandbytes`**, **`vLLM`**, **`qlora`**, **`AutoGPTQ`**, **`AutoAWQ`**, etc.*
|
||||||
> - *It provides seamless integration with [llama.cpp](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/llama_cpp_quickstart.html), [Text-Generation-WebUI](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/webui_quickstart.html), [HuggingFace transformers](python/llm/example/GPU/HF-Transformers-AutoModels), [HuggingFace PEFT](python/llm/example/GPU/LLM-Finetuning), [LangChain](python/llm/example/GPU/LangChain), [LlamaIndex](python/llm/example/GPU/LlamaIndex), [DeepSpeed-AutoTP](python/llm/example/GPU/Deepspeed-AutoTP), [vLLM](python/llm/example/GPU/vLLM-Serving), [FastChat](python/llm/src/ipex_llm/serving/fastchat), [HuggingFace TRL](python/llm/example/GPU/LLM-Finetuning/DPO), [AutoGen](python/llm/example/CPU/Applications/autogen), [ModeScope](python/llm/example/GPU/ModelScope-Models), etc.*
|
> - *It provides seamless integration with [llama.cpp](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/llama_cpp_quickstart.html), [ollama](https://ipex-llm.readthedocs.io/en/main/doc/LLM/Quickstart/ollama_quickstart.html), [Text-Generation-WebUI](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/webui_quickstart.html), [HuggingFace transformers](python/llm/example/GPU/HF-Transformers-AutoModels), [HuggingFace PEFT](python/llm/example/GPU/LLM-Finetuning), [LangChain](python/llm/example/GPU/LangChain), [LlamaIndex](python/llm/example/GPU/LlamaIndex), [DeepSpeed-AutoTP](python/llm/example/GPU/Deepspeed-AutoTP), [vLLM](python/llm/example/GPU/vLLM-Serving), [FastChat](python/llm/src/ipex_llm/serving/fastchat), [HuggingFace TRL](python/llm/example/GPU/LLM-Finetuning/DPO), [AutoGen](python/llm/example/CPU/Applications/autogen), [ModeScope](python/llm/example/GPU/ModelScope-Models), etc.*
|
||||||
> - ***50+ models** have been optimized/verified on `ipex-llm` (including LLaMA2, Mistral, Mixtral, Gemma, LLaVA, Whisper, ChatGLM, Baichuan, Qwen, RWKV, and more); see the complete list [here](#verified-models).*
|
> - ***50+ models** have been optimized/verified on `ipex-llm` (including LLaMA2, Mistral, Mixtral, Gemma, LLaVA, Whisper, ChatGLM, Baichuan, Qwen, RWKV, and more); see the complete list [here](#verified-models).*
|
||||||
|
|
||||||
## `ipex-llm` Demo
|
## `ipex-llm` Demo
|
||||||
|
|
@ -48,9 +48,10 @@ See the demo of running [*Text-Generation-WebUI*](https://ipex-llm.readthedocs.i
|
||||||
</table>
|
</table>
|
||||||
|
|
||||||
## Latest Update 🔥
|
## Latest Update 🔥
|
||||||
|
- [2024/04] `ipex-llm` now provides C++ interface, which can be used as an accelerated backend for running [llama.cpp](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/llama_cpp_quickstart.html) and [ollama](https://ipex-llm.readthedocs.io/en/main/doc/LLM/Quickstart/ollama_quickstart.html) on Intel GPU.
|
||||||
- [2024/03] `bigdl-llm` has now become `ipex-llm` (see the migration guide [here](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/bigdl_llm_migration.html)); you may find the original `BigDL` project [here](https://github.com/intel-analytics/bigdl-2.x).
|
- [2024/03] `bigdl-llm` has now become `ipex-llm` (see the migration guide [here](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/bigdl_llm_migration.html)); you may find the original `BigDL` project [here](https://github.com/intel-analytics/bigdl-2.x).
|
||||||
- [2024/02] `ipex-llm` now supports directly loading model from [ModelScope](python/llm/example/GPU/ModelScope-Models) ([魔搭](python/llm/example/CPU/ModelScope-Models)).
|
- [2024/02] `ipex-llm` now supports directly loading model from [ModelScope](python/llm/example/GPU/ModelScope-Models) ([魔搭](python/llm/example/CPU/ModelScope-Models)).
|
||||||
- [2024/02] `ipex-llm` added inital **INT2** support (based on llama.cpp [IQ2](python/llm/example/GPU/HF-Transformers-AutoModels/Advanced-Quantizations/GGUF-IQ2) mechanism), which makes it possible to run large-size LLM (e.g., Mixtral-8x7B) on Intel GPU with 16GB VRAM.
|
- [2024/02] `ipex-llm` added initial **INT2** support (based on llama.cpp [IQ2](python/llm/example/GPU/HF-Transformers-AutoModels/Advanced-Quantizations/GGUF-IQ2) mechanism), which makes it possible to run large-size LLM (e.g., Mixtral-8x7B) on Intel GPU with 16GB VRAM.
|
||||||
- [2024/02] Users can now use `ipex-llm` through [Text-Generation-WebUI](https://github.com/intel-analytics/text-generation-webui) GUI.
|
- [2024/02] Users can now use `ipex-llm` through [Text-Generation-WebUI](https://github.com/intel-analytics/text-generation-webui) GUI.
|
||||||
- [2024/02] `ipex-llm` now supports *[Self-Speculative Decoding](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Inference/Self_Speculative_Decoding.html)*, which in practice brings **~30% speedup** for FP16 and BF16 inference latency on Intel [GPU](python/llm/example/GPU/Speculative-Decoding) and [CPU](python/llm/example/CPU/Speculative-Decoding) respectively.
|
- [2024/02] `ipex-llm` now supports *[Self-Speculative Decoding](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Inference/Self_Speculative_Decoding.html)*, which in practice brings **~30% speedup** for FP16 and BF16 inference latency on Intel [GPU](python/llm/example/GPU/Speculative-Decoding) and [CPU](python/llm/example/CPU/Speculative-Decoding) respectively.
|
||||||
- [2024/02] `ipex-llm` now supports a comprehensive list of LLM **finetuning** on Intel GPU (including [LoRA](python/llm/example/GPU/LLM-Finetuning/LoRA), [QLoRA](python/llm/example/GPU/LLM-Finetuning/QLoRA), [DPO](python/llm/example/GPU/LLM-Finetuning/DPO), [QA-LoRA](python/llm/example/GPU/LLM-Finetuning/QA-LoRA) and [ReLoRA](python/llm/example/GPU/LLM-Finetuning/ReLora)).
|
- [2024/02] `ipex-llm` now supports a comprehensive list of LLM **finetuning** on Intel GPU (including [LoRA](python/llm/example/GPU/LLM-Finetuning/LoRA), [QLoRA](python/llm/example/GPU/LLM-Finetuning/QLoRA), [DPO](python/llm/example/GPU/LLM-Finetuning/DPO), [QA-LoRA](python/llm/example/GPU/LLM-Finetuning/QA-LoRA) and [ReLoRA](python/llm/example/GPU/LLM-Finetuning/ReLora)).
|
||||||
|
|
@ -81,7 +82,8 @@ See the demo of running [*Text-Generation-WebUI*](https://ipex-llm.readthedocs.i
|
||||||
- *For more details, please refer to the [installation guide](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Overview/install.html)*
|
- *For more details, please refer to the [installation guide](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Overview/install.html)*
|
||||||
|
|
||||||
### Run `ipex-llm`
|
### Run `ipex-llm`
|
||||||
- [llama.cpp](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/llama_cpp_quickstart.html): running **ipex-llm for llama.cpp** (*using C++ interface of `ipex-llm` as an accelerated backend for `llama.cpp` on Intel GPU*)
|
- [llama.cpp](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/llama_cpp_quickstart.html): running **llama.cpp** (*using C++ interface of `ipex-llm` as an accelerated backend for `llama.cpp`*) on Intel GPU
|
||||||
|
- [ollama](https://ipex-llm.readthedocs.io/en/main/doc/LLM/Quickstart/ollama_quickstart.html): running **ollama** (*using C++ interface of `ipex-llm` as an accelerated backend for `ollama`*) on Intel GPU
|
||||||
- [vLLM](python/llm/example/GPU/vLLM-Serving): running `ipex-llm` in `vLLM` on both Intel [GPU](python/llm/example/GPU/vLLM-Serving) and [CPU](python/llm/example/CPU/vLLM-Serving)
|
- [vLLM](python/llm/example/GPU/vLLM-Serving): running `ipex-llm` in `vLLM` on both Intel [GPU](python/llm/example/GPU/vLLM-Serving) and [CPU](python/llm/example/CPU/vLLM-Serving)
|
||||||
- [FastChat](python/llm/src/ipex_llm/serving/fastchat): running `ipex-llm` in `FastChat` serving on on both Intel GPU and CPU
|
- [FastChat](python/llm/src/ipex_llm/serving/fastchat): running `ipex-llm` in `FastChat` serving on on both Intel GPU and CPU
|
||||||
- [LangChain-Chatchat RAG](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/chatchat_quickstart.html): running `ipex-llm` in `LangChain-Chatchat` (*Knowledge Base QA using **RAG** pipeline*)
|
- [LangChain-Chatchat RAG](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/chatchat_quickstart.html): running `ipex-llm` in `LangChain-Chatchat` (*Knowledge Base QA using **RAG** pipeline*)
|
||||||
|
|
|
||||||
|
|
@ -21,7 +21,7 @@ RUN echo "deb [signed-by=/usr/share/keyrings/intel-oneapi-archive-keyring.gpg] h
|
||||||
RUN mkdir /ipex_llm/data && mkdir /ipex_llm/model && \
|
RUN mkdir /ipex_llm/data && mkdir /ipex_llm/model && \
|
||||||
# install pytorch 2.0.1
|
# install pytorch 2.0.1
|
||||||
apt-get update && \
|
apt-get update && \
|
||||||
apt-get install -y python3-pip python3.9-dev python3-wheel git software-properties-common && \
|
apt-get install -y python3-pip python3.11-dev python3-wheel git software-properties-common && \
|
||||||
pip3 install --upgrade pip && \
|
pip3 install --upgrade pip && \
|
||||||
export PIP_DEFAULT_TIMEOUT=100 && \
|
export PIP_DEFAULT_TIMEOUT=100 && \
|
||||||
pip install --upgrade torch==2.1.0 --index-url https://download.pytorch.org/whl/cpu && \
|
pip install --upgrade torch==2.1.0 --index-url https://download.pytorch.org/whl/cpu && \
|
||||||
|
|
@ -37,9 +37,9 @@ RUN mkdir /ipex_llm/data && mkdir /ipex_llm/model && \
|
||||||
pip install -r /ipex_llm/requirements.txt && \
|
pip install -r /ipex_llm/requirements.txt && \
|
||||||
# install python
|
# install python
|
||||||
add-apt-repository ppa:deadsnakes/ppa -y && \
|
add-apt-repository ppa:deadsnakes/ppa -y && \
|
||||||
apt-get install -y python3.9 && \
|
apt-get install -y python3.11 && \
|
||||||
rm /usr/bin/python3 && \
|
rm /usr/bin/python3 && \
|
||||||
ln -s /usr/bin/python3.9 /usr/bin/python3 && \
|
ln -s /usr/bin/python3.11 /usr/bin/python3 && \
|
||||||
ln -s /usr/bin/python3 /usr/bin/python && \
|
ln -s /usr/bin/python3 /usr/bin/python && \
|
||||||
pip install --no-cache requests argparse cryptography==3.3.2 urllib3 && \
|
pip install --no-cache requests argparse cryptography==3.3.2 urllib3 && \
|
||||||
pip install --upgrade requests && \
|
pip install --upgrade requests && \
|
||||||
|
|
|
||||||
|
|
@ -21,7 +21,7 @@ RUN echo "deb [signed-by=/usr/share/keyrings/intel-oneapi-archive-keyring.gpg] h
|
||||||
RUN mkdir -p /ipex_llm/data && mkdir -p /ipex_llm/model && \
|
RUN mkdir -p /ipex_llm/data && mkdir -p /ipex_llm/model && \
|
||||||
# install pytorch 2.1.0
|
# install pytorch 2.1.0
|
||||||
apt-get update && \
|
apt-get update && \
|
||||||
apt-get install -y --no-install-recommends python3-pip python3.9-dev python3-wheel python3.9-distutils git software-properties-common && \
|
apt-get install -y --no-install-recommends python3-pip python3.11-dev python3-wheel python3.11-distutils git software-properties-common && \
|
||||||
apt-get clean && \
|
apt-get clean && \
|
||||||
rm -rf /var/lib/apt/lists/* && \
|
rm -rf /var/lib/apt/lists/* && \
|
||||||
pip3 install --upgrade pip && \
|
pip3 install --upgrade pip && \
|
||||||
|
|
|
||||||
|
|
@ -22,7 +22,7 @@ RUN echo "deb [signed-by=/usr/share/keyrings/intel-oneapi-archive-keyring.gpg] h
|
||||||
RUN mkdir -p /ipex_llm/data && mkdir -p /ipex_llm/model && \
|
RUN mkdir -p /ipex_llm/data && mkdir -p /ipex_llm/model && \
|
||||||
apt-get update && \
|
apt-get update && \
|
||||||
apt install -y --no-install-recommends openssh-server openssh-client libcap2-bin gnupg2 ca-certificates \
|
apt install -y --no-install-recommends openssh-server openssh-client libcap2-bin gnupg2 ca-certificates \
|
||||||
python3-pip python3.9-dev python3-wheel python3.9-distutils git software-properties-common && \
|
python3-pip python3.11-dev python3-wheel python3.11-distutils git software-properties-common && \
|
||||||
apt-get clean && \
|
apt-get clean && \
|
||||||
rm -rf /var/lib/apt/lists/* && \
|
rm -rf /var/lib/apt/lists/* && \
|
||||||
mkdir -p /var/run/sshd && \
|
mkdir -p /var/run/sshd && \
|
||||||
|
|
|
||||||
|
|
@ -18,15 +18,15 @@ RUN curl -fsSL https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-P
|
||||||
apt-get install -y curl wget git gnupg gpg-agent software-properties-common libunwind8-dev vim less && \
|
apt-get install -y curl wget git gnupg gpg-agent software-properties-common libunwind8-dev vim less && \
|
||||||
# install Intel GPU driver
|
# install Intel GPU driver
|
||||||
apt-get install -y intel-opencl-icd intel-level-zero-gpu=1.3.26241.33-647~22.04 level-zero level-zero-dev --allow-downgrades && \
|
apt-get install -y intel-opencl-icd intel-level-zero-gpu=1.3.26241.33-647~22.04 level-zero level-zero-dev --allow-downgrades && \
|
||||||
# install python 3.9
|
# install python 3.11
|
||||||
ln -snf /usr/share/zoneinfo/$TZ /etc/localtime && echo $TZ > /etc/timezone && \
|
ln -snf /usr/share/zoneinfo/$TZ /etc/localtime && echo $TZ > /etc/timezone && \
|
||||||
env DEBIAN_FRONTEND=noninteractive apt-get update && \
|
env DEBIAN_FRONTEND=noninteractive apt-get update && \
|
||||||
add-apt-repository ppa:deadsnakes/ppa -y && \
|
add-apt-repository ppa:deadsnakes/ppa -y && \
|
||||||
apt-get install -y python3.9 && \
|
apt-get install -y python3.11 && \
|
||||||
rm /usr/bin/python3 && \
|
rm /usr/bin/python3 && \
|
||||||
ln -s /usr/bin/python3.9 /usr/bin/python3 && \
|
ln -s /usr/bin/python3.11 /usr/bin/python3 && \
|
||||||
ln -s /usr/bin/python3 /usr/bin/python && \
|
ln -s /usr/bin/python3 /usr/bin/python && \
|
||||||
apt-get install -y python3-pip python3.9-dev python3-wheel python3.9-distutils && \
|
apt-get install -y python3-pip python3.11-dev python3-wheel python3.11-distutils && \
|
||||||
curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py && \
|
curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py && \
|
||||||
# install XPU ipex-llm
|
# install XPU ipex-llm
|
||||||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ && \
|
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ && \
|
||||||
|
|
|
||||||
|
|
@ -9,22 +9,30 @@ ENV PYTHONUNBUFFERED=1
|
||||||
|
|
||||||
COPY ./start-notebook.sh /llm/start-notebook.sh
|
COPY ./start-notebook.sh /llm/start-notebook.sh
|
||||||
|
|
||||||
# Install PYTHON 3.9
|
# Update the software sources
|
||||||
RUN env DEBIAN_FRONTEND=noninteractive apt-get update && \
|
RUN env DEBIAN_FRONTEND=noninteractive apt-get update && \
|
||||||
|
# Install essential packages
|
||||||
apt install software-properties-common libunwind8-dev vim less -y && \
|
apt install software-properties-common libunwind8-dev vim less -y && \
|
||||||
|
# Install git, curl, and wget
|
||||||
|
apt-get install -y git curl wget && \
|
||||||
|
# Install Python 3.11
|
||||||
|
# Add Python 3.11 PPA repository
|
||||||
add-apt-repository ppa:deadsnakes/ppa -y && \
|
add-apt-repository ppa:deadsnakes/ppa -y && \
|
||||||
apt-get install -y python3.9 git curl wget && \
|
# Install Python 3.11
|
||||||
|
apt-get install -y python3.11 && \
|
||||||
|
# Remove the original /usr/bin/python3 symbolic link
|
||||||
rm /usr/bin/python3 && \
|
rm /usr/bin/python3 && \
|
||||||
ln -s /usr/bin/python3.9 /usr/bin/python3 && \
|
# Create a symbolic link pointing to Python 3.11 at /usr/bin/python3
|
||||||
|
ln -s /usr/bin/python3.11 /usr/bin/python3 && \
|
||||||
|
# Create a symbolic link pointing to /usr/bin/python3 at /usr/bin/python
|
||||||
ln -s /usr/bin/python3 /usr/bin/python && \
|
ln -s /usr/bin/python3 /usr/bin/python && \
|
||||||
apt-get install -y python3-pip python3.9-dev python3-wheel python3.9-distutils && \
|
# Install Python 3.11 development and utility packages
|
||||||
|
apt-get install -y python3-pip python3.11-dev python3-wheel python3.11-distutils && \
|
||||||
|
# Download and install pip, install FastChat from source requires PEP 660 support
|
||||||
curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py && \
|
curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py && \
|
||||||
# Install FastChat from source requires PEP 660 support
|
|
||||||
python3 get-pip.py && \
|
python3 get-pip.py && \
|
||||||
rm get-pip.py && \
|
rm get-pip.py && \
|
||||||
pip install --upgrade requests argparse urllib3 && \
|
pip install --upgrade requests argparse urllib3 && \
|
||||||
pip3 install --no-cache-dir --upgrade torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu && \
|
|
||||||
pip install --pre --upgrade ipex-llm[all] && \
|
|
||||||
# Download ipex-llm-tutorial
|
# Download ipex-llm-tutorial
|
||||||
cd /llm && \
|
cd /llm && \
|
||||||
pip install --upgrade jupyterlab && \
|
pip install --upgrade jupyterlab && \
|
||||||
|
|
|
||||||
|
|
@ -20,16 +20,16 @@ RUN curl -fsSL https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-P
|
||||||
wget -qO - https://repositories.intel.com/graphics/intel-graphics.key | gpg --dearmor --output /usr/share/keyrings/intel-graphics.gpg && \
|
wget -qO - https://repositories.intel.com/graphics/intel-graphics.key | gpg --dearmor --output /usr/share/keyrings/intel-graphics.gpg && \
|
||||||
echo 'deb [arch=amd64,i386 signed-by=/usr/share/keyrings/intel-graphics.gpg] https://repositories.intel.com/graphics/ubuntu jammy arc' | tee /etc/apt/sources.list.d/intel.gpu.jammy.list && \
|
echo 'deb [arch=amd64,i386 signed-by=/usr/share/keyrings/intel-graphics.gpg] https://repositories.intel.com/graphics/ubuntu jammy arc' | tee /etc/apt/sources.list.d/intel.gpu.jammy.list && \
|
||||||
rm /etc/apt/sources.list.d/intel-graphics.list && \
|
rm /etc/apt/sources.list.d/intel-graphics.list && \
|
||||||
# Install PYTHON 3.9 and IPEX-LLM[xpu]
|
# Install PYTHON 3.11 and IPEX-LLM[xpu]
|
||||||
ln -snf /usr/share/zoneinfo/$TZ /etc/localtime && echo $TZ > /etc/timezone && \
|
ln -snf /usr/share/zoneinfo/$TZ /etc/localtime && echo $TZ > /etc/timezone && \
|
||||||
env DEBIAN_FRONTEND=noninteractive apt-get update && \
|
env DEBIAN_FRONTEND=noninteractive apt-get update && \
|
||||||
apt install software-properties-common libunwind8-dev vim less -y && \
|
apt install software-properties-common libunwind8-dev vim less -y && \
|
||||||
add-apt-repository ppa:deadsnakes/ppa -y && \
|
add-apt-repository ppa:deadsnakes/ppa -y && \
|
||||||
apt-get install -y python3.9 git curl wget && \
|
apt-get install -y python3.11 git curl wget && \
|
||||||
rm /usr/bin/python3 && \
|
rm /usr/bin/python3 && \
|
||||||
ln -s /usr/bin/python3.9 /usr/bin/python3 && \
|
ln -s /usr/bin/python3.11 /usr/bin/python3 && \
|
||||||
ln -s /usr/bin/python3 /usr/bin/python && \
|
ln -s /usr/bin/python3 /usr/bin/python && \
|
||||||
apt-get install -y python3-pip python3.9-dev python3-wheel python3.9-distutils && \
|
apt-get install -y python3-pip python3.11-dev python3-wheel python3.11-distutils && \
|
||||||
curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py && \
|
curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py && \
|
||||||
# Install FastChat from source requires PEP 660 support
|
# Install FastChat from source requires PEP 660 support
|
||||||
python3 get-pip.py && \
|
python3 get-pip.py && \
|
||||||
|
|
|
||||||
|
|
@ -16,7 +16,7 @@ RUN cd /llm && \
|
||||||
# Fix Trivy CVE Issues
|
# Fix Trivy CVE Issues
|
||||||
pip install Jinja2==3.1.3 transformers==4.36.2 gradio==4.19.2 cryptography==42.0.4 && \
|
pip install Jinja2==3.1.3 transformers==4.36.2 gradio==4.19.2 cryptography==42.0.4 && \
|
||||||
# Fix Qwen model adpater in fastchat
|
# Fix Qwen model adpater in fastchat
|
||||||
patch /usr/local/lib/python3.9/dist-packages/fastchat/model/model_adapter.py < /llm/model_adapter.py.patch && \
|
patch /usr/local/lib/python3.11/dist-packages/fastchat/model/model_adapter.py < /llm/model_adapter.py.patch && \
|
||||||
chmod +x /opt/entrypoint.sh && \
|
chmod +x /opt/entrypoint.sh && \
|
||||||
chmod +x /sbin/tini && \
|
chmod +x /sbin/tini && \
|
||||||
cp /sbin/tini /usr/bin/tini
|
cp /sbin/tini /usr/bin/tini
|
||||||
|
|
|
||||||
|
|
@ -29,13 +29,16 @@
|
||||||
<a href="doc/LLM/Quickstart/docker_windows_gpu.html">Install IPEX-LLM in Docker on Windows with Intel GPU</a>
|
<a href="doc/LLM/Quickstart/docker_windows_gpu.html">Install IPEX-LLM in Docker on Windows with Intel GPU</a>
|
||||||
</li>
|
</li>
|
||||||
<li>
|
<li>
|
||||||
<a href="doc/LLM/Quickstart/chatchat_quickstart.html">Run Langchain-Chatchat (RAG Application) on Intel GPU</a>
|
<a href="doc/LLM/Quickstart/chatchat_quickstart.html">Run Local RAG using Langchain-Chatchat on Intel GPU</a>
|
||||||
</li>
|
</li>
|
||||||
<li>
|
<li>
|
||||||
<a href="doc/LLM/Quickstart/webui_quickstart.html">Run Text Generation WebUI on Intel GPU</a>
|
<a href="doc/LLM/Quickstart/webui_quickstart.html">Run Text Generation WebUI on Intel GPU</a>
|
||||||
</li>
|
</li>
|
||||||
<li>
|
<li>
|
||||||
<a href="doc/LLM/Quickstart/continue_quickstart.html">Run Code Copilot (Continue) in VSCode with Intel GPU</a>
|
<a href="doc/LLM/Quickstart/continue_quickstart.html">Run Coding Copilot (Continue) in VSCode with Intel GPU</a>
|
||||||
|
</li>
|
||||||
|
<li>
|
||||||
|
<a href="doc/LLM/Quickstart/open_webui_with_ollama_quickstart.html">Run Open WebUI with IPEX-LLM on Intel GPU</a>
|
||||||
</li>
|
</li>
|
||||||
<li>
|
<li>
|
||||||
<a href="doc/LLM/Quickstart/benchmark_quickstart.html">Run Performance Benchmarking with IPEX-LLM</a>
|
<a href="doc/LLM/Quickstart/benchmark_quickstart.html">Run Performance Benchmarking with IPEX-LLM</a>
|
||||||
|
|
|
||||||
|
|
@ -25,6 +25,7 @@ subtrees:
|
||||||
- file: doc/LLM/Quickstart/docker_windows_gpu
|
- file: doc/LLM/Quickstart/docker_windows_gpu
|
||||||
- file: doc/LLM/Quickstart/chatchat_quickstart
|
- file: doc/LLM/Quickstart/chatchat_quickstart
|
||||||
- file: doc/LLM/Quickstart/webui_quickstart
|
- file: doc/LLM/Quickstart/webui_quickstart
|
||||||
|
- file: doc/LLM/Quickstart/open_webui_with_ollama_quickstart
|
||||||
- file: doc/LLM/Quickstart/continue_quickstart
|
- file: doc/LLM/Quickstart/continue_quickstart
|
||||||
- file: doc/LLM/Quickstart/benchmark_quickstart
|
- file: doc/LLM/Quickstart/benchmark_quickstart
|
||||||
- file: doc/LLM/Quickstart/llama_cpp_quickstart
|
- file: doc/LLM/Quickstart/llama_cpp_quickstart
|
||||||
|
|
|
||||||
|
|
@ -17,7 +17,7 @@ Please refer to [Environment Setup](#environment-setup) for more information.
|
||||||
|
|
||||||
.. important::
|
.. important::
|
||||||
|
|
||||||
``ipex-llm`` is tested with Python 3.9, 3.10 and 3.11; Python 3.9 is recommended for best practices.
|
``ipex-llm`` is tested with Python 3.9, 3.10 and 3.11; Python 3.11 is recommended for best practices.
|
||||||
```
|
```
|
||||||
|
|
||||||
## Recommended Requirements
|
## Recommended Requirements
|
||||||
|
|
@ -39,10 +39,10 @@ Here list the recommended hardware and OS for smooth IPEX-LLM optimization exper
|
||||||
|
|
||||||
For optimal performance with LLM models using IPEX-LLM optimizations on Intel CPUs, here are some best practices for setting up environment:
|
For optimal performance with LLM models using IPEX-LLM optimizations on Intel CPUs, here are some best practices for setting up environment:
|
||||||
|
|
||||||
First we recommend using [Conda](https://docs.conda.io/en/latest/miniconda.html) to create a python 3.9 enviroment:
|
First we recommend using [Conda](https://docs.conda.io/en/latest/miniconda.html) to create a python 3.11 enviroment:
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9
|
conda create -n llm python=3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
||||||
|
|
|
||||||
|
|
@ -22,10 +22,10 @@ To apply Intel GPU acceleration, there're several prerequisite steps for tools i
|
||||||
|
|
||||||
* Step 4: Install Intel® oneAPI Base Toolkit 2024.0:
|
* Step 4: Install Intel® oneAPI Base Toolkit 2024.0:
|
||||||
|
|
||||||
First, Create a Python 3.9 enviroment and activate it. In Anaconda Prompt:
|
First, Create a Python 3.11 enviroment and activate it. In Anaconda Prompt:
|
||||||
|
|
||||||
```cmd
|
```cmd
|
||||||
conda create -n llm python=3.9 libuv
|
conda create -n llm python=3.11 libuv
|
||||||
|
|
||||||
conda activate llm
|
conda activate llm
|
||||||
```
|
```
|
||||||
|
|
@ -33,7 +33,7 @@ To apply Intel GPU acceleration, there're several prerequisite steps for tools i
|
||||||
```eval_rst
|
```eval_rst
|
||||||
.. important::
|
.. important::
|
||||||
|
|
||||||
``ipex-llm`` is tested with Python 3.9, 3.10 and 3.11. Python 3.9 is recommended for best practices.
|
``ipex-llm`` is tested with Python 3.9, 3.10 and 3.11. Python 3.11 is recommended for best practices.
|
||||||
```
|
```
|
||||||
|
|
||||||
Then, use `pip` to install the Intel oneAPI Base Toolkit 2024.0:
|
Then, use `pip` to install the Intel oneAPI Base Toolkit 2024.0:
|
||||||
|
|
@ -93,17 +93,17 @@ If you encounter network issues when installing IPEX, you can also install IPEX-
|
||||||
Download the wheels on Windows system:
|
Download the wheels on Windows system:
|
||||||
|
|
||||||
```
|
```
|
||||||
wget https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/xpu/torch-2.1.0a0%2Bcxx11.abi-cp39-cp39-win_amd64.whl
|
wget https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/xpu/torch-2.1.0a0%2Bcxx11.abi-cp311-cp311-win_amd64.whl
|
||||||
wget https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/xpu/torchvision-0.16.0a0%2Bcxx11.abi-cp39-cp39-win_amd64.whl
|
wget https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/xpu/torchvision-0.16.0a0%2Bcxx11.abi-cp311-cp311-win_amd64.whl
|
||||||
wget https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/xpu/intel_extension_for_pytorch-2.1.10%2Bxpu-cp39-cp39-win_amd64.whl
|
wget https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/xpu/intel_extension_for_pytorch-2.1.10%2Bxpu-cp311-cp311-win_amd64.whl
|
||||||
```
|
```
|
||||||
|
|
||||||
You may install dependencies directly from the wheel archives and then install `ipex-llm` using following commands:
|
You may install dependencies directly from the wheel archives and then install `ipex-llm` using following commands:
|
||||||
|
|
||||||
```
|
```
|
||||||
pip install torch-2.1.0a0+cxx11.abi-cp39-cp39-win_amd64.whl
|
pip install torch-2.1.0a0+cxx11.abi-cp311-cp311-win_amd64.whl
|
||||||
pip install torchvision-0.16.0a0+cxx11.abi-cp39-cp39-win_amd64.whl
|
pip install torchvision-0.16.0a0+cxx11.abi-cp311-cp311-win_amd64.whl
|
||||||
pip install intel_extension_for_pytorch-2.1.10+xpu-cp39-cp39-win_amd64.whl
|
pip install intel_extension_for_pytorch-2.1.10+xpu-cp311-cp311-win_amd64.whl
|
||||||
|
|
||||||
pip install --pre --upgrade ipex-llm[xpu]
|
pip install --pre --upgrade ipex-llm[xpu]
|
||||||
```
|
```
|
||||||
|
|
@ -111,7 +111,7 @@ pip install --pre --upgrade ipex-llm[xpu]
|
||||||
```eval_rst
|
```eval_rst
|
||||||
.. note::
|
.. note::
|
||||||
|
|
||||||
All the wheel packages mentioned here are for Python 3.9. If you would like to use Python 3.10 or 3.11, you should modify the wheel names for ``torch``, ``torchvision``, and ``intel_extension_for_pytorch`` by replacing ``cp39`` with ``cp310`` or ``cp311``, respectively.
|
All the wheel packages mentioned here are for Python 3.11. If you would like to use Python 3.9 or 3.10, you should modify the wheel names for ``torch``, ``torchvision``, and ``intel_extension_for_pytorch`` by replacing ``cp11`` with ``cp39`` or ``cp310``, respectively.
|
||||||
```
|
```
|
||||||
|
|
||||||
### Runtime Configuration
|
### Runtime Configuration
|
||||||
|
|
@ -164,7 +164,7 @@ If you met error when importing `intel_extension_for_pytorch`, please ensure tha
|
||||||
|
|
||||||
* Ensure that `libuv` is installed in your conda environment. This can be done during the creation of the environment with the command:
|
* Ensure that `libuv` is installed in your conda environment. This can be done during the creation of the environment with the command:
|
||||||
```cmd
|
```cmd
|
||||||
conda create -n llm python=3.9 libuv
|
conda create -n llm python=3.11 libuv
|
||||||
```
|
```
|
||||||
If you missed `libuv`, you can add it to your existing environment through
|
If you missed `libuv`, you can add it to your existing environment through
|
||||||
```cmd
|
```cmd
|
||||||
|
|
@ -399,12 +399,12 @@ IPEX-LLM GPU support on Linux has been verified on:
|
||||||
### Install IPEX-LLM
|
### Install IPEX-LLM
|
||||||
#### Install IPEX-LLM From PyPI
|
#### Install IPEX-LLM From PyPI
|
||||||
|
|
||||||
We recommend using [miniconda](https://docs.conda.io/en/latest/miniconda.html) to create a python 3.9 enviroment:
|
We recommend using [miniconda](https://docs.conda.io/en/latest/miniconda.html) to create a python 3.11 enviroment:
|
||||||
|
|
||||||
```eval_rst
|
```eval_rst
|
||||||
.. important::
|
.. important::
|
||||||
|
|
||||||
``ipex-llm`` is tested with Python 3.9, 3.10 and 3.11. Python 3.9 is recommended for best practices.
|
``ipex-llm`` is tested with Python 3.9, 3.10 and 3.11. Python 3.11 is recommended for best practices.
|
||||||
```
|
```
|
||||||
|
|
||||||
```eval_rst
|
```eval_rst
|
||||||
|
|
@ -422,7 +422,7 @@ We recommend using [miniconda](https://docs.conda.io/en/latest/miniconda.html) t
|
||||||
|
|
||||||
.. code-block:: bash
|
.. code-block:: bash
|
||||||
|
|
||||||
conda create -n llm python=3.9
|
conda create -n llm python=3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||||
|
|
@ -439,7 +439,7 @@ We recommend using [miniconda](https://docs.conda.io/en/latest/miniconda.html) t
|
||||||
|
|
||||||
.. code-block:: bash
|
.. code-block:: bash
|
||||||
|
|
||||||
conda create -n llm python=3.9
|
conda create -n llm python=3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/cn/
|
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/cn/
|
||||||
|
|
@ -461,7 +461,7 @@ We recommend using [miniconda](https://docs.conda.io/en/latest/miniconda.html) t
|
||||||
|
|
||||||
.. code-block:: bash
|
.. code-block:: bash
|
||||||
|
|
||||||
conda create -n llm python=3.9
|
conda create -n llm python=3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install --pre --upgrade ipex-llm[xpu_2.0] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
pip install --pre --upgrade ipex-llm[xpu_2.0] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||||
|
|
@ -470,7 +470,7 @@ We recommend using [miniconda](https://docs.conda.io/en/latest/miniconda.html) t
|
||||||
|
|
||||||
.. code-block:: bash
|
.. code-block:: bash
|
||||||
|
|
||||||
conda create -n llm python=3.9
|
conda create -n llm python=3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install --pre --upgrade ipex-llm[xpu_2.0] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/cn/
|
pip install --pre --upgrade ipex-llm[xpu_2.0] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/cn/
|
||||||
|
|
@ -488,18 +488,18 @@ If you encounter network issues when installing IPEX, you can also install IPEX-
|
||||||
.. code-block:: bash
|
.. code-block:: bash
|
||||||
|
|
||||||
# get the wheels on Linux system for IPEX 2.1.10+xpu
|
# get the wheels on Linux system for IPEX 2.1.10+xpu
|
||||||
wget https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/xpu/torch-2.1.0a0%2Bcxx11.abi-cp39-cp39-linux_x86_64.whl
|
wget https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/xpu/torch-2.1.0a0%2Bcxx11.abi-cp311-cp311-linux_x86_64.whl
|
||||||
wget https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/xpu/torchvision-0.16.0a0%2Bcxx11.abi-cp39-cp39-linux_x86_64.whl
|
wget https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/xpu/torchvision-0.16.0a0%2Bcxx11.abi-cp311-cp311-linux_x86_64.whl
|
||||||
wget https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/xpu/intel_extension_for_pytorch-2.1.10%2Bxpu-cp39-cp39-linux_x86_64.whl
|
wget https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/xpu/intel_extension_for_pytorch-2.1.10%2Bxpu-cp311-cp311-linux_x86_64.whl
|
||||||
|
|
||||||
Then you may install directly from the wheel archives using following commands:
|
Then you may install directly from the wheel archives using following commands:
|
||||||
|
|
||||||
.. code-block:: bash
|
.. code-block:: bash
|
||||||
|
|
||||||
# install the packages from the wheels
|
# install the packages from the wheels
|
||||||
pip install torch-2.1.0a0+cxx11.abi-cp39-cp39-linux_x86_64.whl
|
pip install torch-2.1.0a0+cxx11.abi-cp311-cp311-linux_x86_64.whl
|
||||||
pip install torchvision-0.16.0a0+cxx11.abi-cp39-cp39-linux_x86_64.whl
|
pip install torchvision-0.16.0a0+cxx11.abi-cp311-cp311-linux_x86_64.whl
|
||||||
pip install intel_extension_for_pytorch-2.1.10+xpu-cp39-cp39-linux_x86_64.whl
|
pip install intel_extension_for_pytorch-2.1.10+xpu-cp311-cp311-linux_x86_64.whl
|
||||||
|
|
||||||
# install ipex-llm for Intel GPU
|
# install ipex-llm for Intel GPU
|
||||||
pip install --pre --upgrade ipex-llm[xpu]
|
pip install --pre --upgrade ipex-llm[xpu]
|
||||||
|
|
@ -509,18 +509,18 @@ If you encounter network issues when installing IPEX, you can also install IPEX-
|
||||||
.. code-block:: bash
|
.. code-block:: bash
|
||||||
|
|
||||||
# get the wheels on Linux system for IPEX 2.0.110+xpu
|
# get the wheels on Linux system for IPEX 2.0.110+xpu
|
||||||
wget https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/xpu/torch-2.0.1a0%2Bcxx11.abi-cp39-cp39-linux_x86_64.whl
|
wget https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/xpu/torch-2.0.1a0%2Bcxx11.abi-cp311-cp311-linux_x86_64.whl
|
||||||
wget https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/xpu/torchvision-0.15.2a0%2Bcxx11.abi-cp39-cp39-linux_x86_64.whl
|
wget https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/xpu/torchvision-0.15.2a0%2Bcxx11.abi-cp311-cp311-linux_x86_64.whl
|
||||||
wget https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/xpu/intel_extension_for_pytorch-2.0.110%2Bxpu-cp39-cp39-linux_x86_64.whl
|
wget https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/xpu/intel_extension_for_pytorch-2.0.110%2Bxpu-cp311-cp311-linux_x86_64.whl
|
||||||
|
|
||||||
Then you may install directly from the wheel archives using following commands:
|
Then you may install directly from the wheel archives using following commands:
|
||||||
|
|
||||||
.. code-block:: bash
|
.. code-block:: bash
|
||||||
|
|
||||||
# install the packages from the wheels
|
# install the packages from the wheels
|
||||||
pip install torch-2.0.1a0+cxx11.abi-cp39-cp39-linux_x86_64.whl
|
pip install torch-2.0.1a0+cxx11.abi-cp311-cp311-linux_x86_64.whl
|
||||||
pip install torchvision-0.15.2a0+cxx11.abi-cp39-cp39-linux_x86_64.whl
|
pip install torchvision-0.15.2a0+cxx11.abi-cp311-cp311-linux_x86_64.whl
|
||||||
pip install intel_extension_for_pytorch-2.0.110+xpu-cp39-cp39-linux_x86_64.whl
|
pip install intel_extension_for_pytorch-2.0.110+xpu-cp311-cp311-linux_x86_64.whl
|
||||||
|
|
||||||
# install ipex-llm for Intel GPU
|
# install ipex-llm for Intel GPU
|
||||||
pip install --pre --upgrade ipex-llm[xpu_2.0]
|
pip install --pre --upgrade ipex-llm[xpu_2.0]
|
||||||
|
|
@ -530,7 +530,7 @@ If you encounter network issues when installing IPEX, you can also install IPEX-
|
||||||
```eval_rst
|
```eval_rst
|
||||||
.. note::
|
.. note::
|
||||||
|
|
||||||
All the wheel packages mentioned here are for Python 3.9. If you would like to use Python 3.10 or 3.11, you should modify the wheel names for ``torch``, ``torchvision``, and ``intel_extension_for_pytorch`` by replacing ``cp39`` with ``cp310`` or ``cp311``, respectively.
|
All the wheel packages mentioned here are for Python 3.11. If you would like to use Python 3.9 or 3.10, you should modify the wheel names for ``torch``, ``torchvision``, and ``intel_extension_for_pytorch`` by replacing ``cp11`` with ``cp39`` or ``cp310``, respectively.
|
||||||
```
|
```
|
||||||
|
|
||||||
### Runtime Configuration
|
### Runtime Configuration
|
||||||
|
|
|
||||||
|
|
@ -6,8 +6,8 @@
|
||||||
|
|
||||||
<table border="1" width="100%">
|
<table border="1" width="100%">
|
||||||
<tr>
|
<tr>
|
||||||
<td align="center">English</td>
|
<td align="center" width="50%">English</td>
|
||||||
<td align="center">简体中文</td>
|
<td align="center" width="50%">简体中文</td>
|
||||||
</tr>
|
</tr>
|
||||||
<tr>
|
<tr>
|
||||||
<td><video src="https://llm-assets.readthedocs.io/en/latest/_images/langchain-chatchat-en.mp4" width="100%" controls></video></td>
|
<td><video src="https://llm-assets.readthedocs.io/en/latest/_images/langchain-chatchat-en.mp4" width="100%" controls></video></td>
|
||||||
|
|
@ -33,7 +33,7 @@ See the Langchain-Chatchat architecture below ([source](https://github.com/chatc
|
||||||
Follow the guide that corresponds to your specific system and GPU type from the links provided below:
|
Follow the guide that corresponds to your specific system and GPU type from the links provided below:
|
||||||
|
|
||||||
- For systems with Intel Core Ultra integrated GPU: [Windows Guide](https://github.com/intel-analytics/Langchain-Chatchat/blob/ipex-llm/INSTALL_win_mtl.md#)
|
- For systems with Intel Core Ultra integrated GPU: [Windows Guide](https://github.com/intel-analytics/Langchain-Chatchat/blob/ipex-llm/INSTALL_win_mtl.md#)
|
||||||
- For systems with Intel Arc A-Series GPU: [Windows Guide](https://github.com/intel-analytics/Langchain-Chatchat/blob/ipex-llm/INSTALL_windows_arc.md#) | [Linux Guide](https://github.com/intel-analytics/Langchain-Chatchat/blob/ipex-llm/INSTALL_linux_arc.md#)
|
- For systems with Intel Arc A-Series GPU: [Windows Guide](https://github.com/intel-analytics/Langchain-Chatchat/blob/ipex-llm/INSTALL_win_arc.md#) | [Linux Guide](https://github.com/intel-analytics/Langchain-Chatchat/blob/ipex-llm/INSTALL_linux_arc.md#)
|
||||||
- For systems with Intel Data Center Max Series GPU: [Linux Guide](https://github.com/intel-analytics/Langchain-Chatchat/blob/ipex-llm/INSTALL_linux_max.md#)
|
- For systems with Intel Data Center Max Series GPU: [Linux Guide](https://github.com/intel-analytics/Langchain-Chatchat/blob/ipex-llm/INSTALL_linux_max.md#)
|
||||||
|
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -1,8 +1,9 @@
|
||||||
|
|
||||||
# Run Code Copilot on Windows with Intel GPU
|
# Run Coding Copilot on Windows with Intel GPU
|
||||||
|
|
||||||
[**Continue**](https://marketplace.visualstudio.com/items?itemName=Continue.continue) is a coding copilot extension in [Microsoft Visual Studio Code](https://code.visualstudio.com/); by porting it to [`ipex-llm`](https://github.com/intel-analytics/ipex-llm), users can now easily leverage local llms running on Intel GPU (e.g., local PC with iGPU, discrete GPU such as Arc, Flex and Max) for code explanation, code generation/completion; see the demos of using Continue with [Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) running on Intel A770 GPU below.
|
[**Continue**](https://marketplace.visualstudio.com/items?itemName=Continue.continue) is a coding copilot extension in [Microsoft Visual Studio Code](https://code.visualstudio.com/); by porting it to [`ipex-llm`](https://github.com/intel-analytics/ipex-llm), users can now easily leverage local LLMs running on Intel GPU (e.g., local PC with iGPU, discrete GPU such as Arc, Flex and Max) for code explanation, code generation/completion, etc.
|
||||||
|
|
||||||
|
See the demos of using Continue with [Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) running on Intel A770 GPU below.
|
||||||
|
|
||||||
<table border="1" width="100%">
|
<table border="1" width="100%">
|
||||||
<tr>
|
<tr>
|
||||||
|
|
@ -27,7 +28,7 @@ This guide walks you through setting up and running **Continue** within _Visual
|
||||||
|
|
||||||
Visit [Run Text Generation WebUI Quickstart Guide](webui_quickstart.html), and follow the steps 1) [Install IPEX-LLM](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/webui_quickstart.html#install-ipex-llm), 2) [Install WebUI](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/webui_quickstart.html#install-the-webui) and 3) [Start the Server](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/webui_quickstart.html#start-the-webui-server) to install and start the Text Generation WebUI API Service. **Please pay attention to below items during installation:**
|
Visit [Run Text Generation WebUI Quickstart Guide](webui_quickstart.html), and follow the steps 1) [Install IPEX-LLM](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/webui_quickstart.html#install-ipex-llm), 2) [Install WebUI](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/webui_quickstart.html#install-the-webui) and 3) [Start the Server](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/webui_quickstart.html#start-the-webui-server) to install and start the Text Generation WebUI API Service. **Please pay attention to below items during installation:**
|
||||||
|
|
||||||
- The Text Generation WebUI API service requires Python version 3.10 or higher. But [IPEX-LLM installation instructions](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/webui_quickstart.html#install-ipex-llm) used ``python=3.9`` as default for creating the conda environment. We recommend changing it to ``3.11``, using below command:
|
- The Text Generation WebUI API service requires Python version 3.10 or higher. We recommend use Python 3.11 as below:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.11 libuv
|
conda create -n llm python=3.11 libuv
|
||||||
```
|
```
|
||||||
|
|
|
||||||
|
|
@ -13,9 +13,10 @@ This section includes efficient guide to show you how to:
|
||||||
* `Install IPEX-LLM on Windows with Intel GPU <./install_windows_gpu.html>`_
|
* `Install IPEX-LLM on Windows with Intel GPU <./install_windows_gpu.html>`_
|
||||||
* `Install IPEX-LLM in Docker on Windows with Intel GPU <./docker_windows_gpu.html>`_
|
* `Install IPEX-LLM in Docker on Windows with Intel GPU <./docker_windows_gpu.html>`_
|
||||||
* `Run Performance Benchmarking with IPEX-LLM <./benchmark_quickstart.html>`_
|
* `Run Performance Benchmarking with IPEX-LLM <./benchmark_quickstart.html>`_
|
||||||
* `Run Langchain-Chatchat (RAG Application) on Intel GPU <./chatchat_quickstart.html>`_
|
* `Run Local RAG using Langchain-Chatchat on Intel GPU <./chatchat_quickstart.html>`_
|
||||||
* `Run Text Generation WebUI on Intel GPU <./webui_quickstart.html>`_
|
* `Run Text Generation WebUI on Intel GPU <./webui_quickstart.html>`_
|
||||||
* `Run Code Copilot (Continue) in VSCode with Intel GPU <./continue_quickstart.html>`_
|
* `Run Open WebUI on Intel GPU <./open_webui_with_ollama_quickstart.html>`_
|
||||||
|
* `Run Coding Copilot (Continue) in VSCode with Intel GPU <./continue_quickstart.html>`_
|
||||||
* `Run llama.cpp with IPEX-LLM on Intel GPU <./llama_cpp_quickstart.html>`_
|
* `Run llama.cpp with IPEX-LLM on Intel GPU <./llama_cpp_quickstart.html>`_
|
||||||
* `Run Ollama with IPEX-LLM on Intel GPU <./ollama_quickstart.html>`_
|
* `Run Ollama with IPEX-LLM on Intel GPU <./ollama_quickstart.html>`_
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -144,7 +144,7 @@ You can use `conda --version` to verify you conda installation.
|
||||||
|
|
||||||
After installation, create a new python environment `llm`:
|
After installation, create a new python environment `llm`:
|
||||||
```cmd
|
```cmd
|
||||||
conda create -n llm python=3.9
|
conda create -n llm python=3.11
|
||||||
```
|
```
|
||||||
Activate the newly created environment `llm`:
|
Activate the newly created environment `llm`:
|
||||||
```cmd
|
```cmd
|
||||||
|
|
|
||||||
|
|
@ -57,7 +57,7 @@ Visit [Miniconda installation page](https://docs.anaconda.com/free/miniconda/),
|
||||||
|
|
||||||
Open the **Anaconda Prompt**. Then create a new python environment `llm` and activate it:
|
Open the **Anaconda Prompt**. Then create a new python environment `llm` and activate it:
|
||||||
```cmd
|
```cmd
|
||||||
conda create -n llm python=3.9 libuv
|
conda create -n llm python=3.11 libuv
|
||||||
conda activate llm
|
conda activate llm
|
||||||
```
|
```
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -1,6 +1,6 @@
|
||||||
# Run llama.cpp with IPEX-LLM on Intel GPU
|
# Run llama.cpp with IPEX-LLM on Intel GPU
|
||||||
|
|
||||||
[ggerganov/llama.cpp](https://github.com/ggerganov/llama.cpp) prvoides fast LLM inference in in pure C++ across a variety of hardware; you can now use the C++ interface of `ipex-llm` as an accelerated backend for `llama.cpp` running on Intel **GPU** *(e.g., local PC with iGPU, discrete GPU such as Arc, Flex and Max)*.
|
[ggerganov/llama.cpp](https://github.com/ggerganov/llama.cpp) prvoides fast LLM inference in in pure C++ across a variety of hardware; you can now use the C++ interface of [`ipex-llm`](https://github.com/intel-analytics/ipex-llm) as an accelerated backend for `llama.cpp` running on Intel **GPU** *(e.g., local PC with iGPU, discrete GPU such as Arc, Flex and Max)*.
|
||||||
|
|
||||||
See the demo of running LLaMA2-7B on Intel Arc GPU below.
|
See the demo of running LLaMA2-7B on Intel Arc GPU below.
|
||||||
|
|
||||||
|
|
@ -26,7 +26,7 @@ Visit the [Install IPEX-LLM on Windows with Intel GPU Guide](https://ipex-llm.re
|
||||||
|
|
||||||
To use `llama.cpp` with IPEX-LLM, first ensure that `ipex-llm[cpp]` is installed.
|
To use `llama.cpp` with IPEX-LLM, first ensure that `ipex-llm[cpp]` is installed.
|
||||||
```cmd
|
```cmd
|
||||||
conda create -n llm-cpp python=3.9
|
conda create -n llm-cpp python=3.11
|
||||||
conda activate llm-cpp
|
conda activate llm-cpp
|
||||||
pip install --pre --upgrade ipex-llm[cpp]
|
pip install --pre --upgrade ipex-llm[cpp]
|
||||||
```
|
```
|
||||||
|
|
|
||||||
|
|
@ -1,10 +1,16 @@
|
||||||
# Run Ollama on Linux with Intel GPU
|
# Run Ollama on Linux with Intel GPU
|
||||||
|
|
||||||
The [ollama/ollama](https://github.com/ollama/ollama) is popular framework designed to build and run language models on a local machine. Now you can run Ollama with [`ipex-llm`](https://github.com/intel-analytics/ipex-llm) on Intel GPU (e.g., local PC with iGPU, discrete GPU such as Arc, Flex and Max); see the demo of running LLaMA2-7B on an Intel A770 GPU below.
|
[ollama/ollama](https://github.com/ollama/ollama) is popular framework designed to build and run language models on a local machine; you can now use the C++ interface of [`ipex-llm`](https://github.com/intel-analytics/ipex-llm) as an accelerated backend for `ollama` running on Intel **GPU** *(e.g., local PC with iGPU, discrete GPU such as Arc, Flex and Max)*.
|
||||||
|
|
||||||
|
```eval_rst
|
||||||
|
.. note::
|
||||||
|
Only Linux is currently supported.
|
||||||
|
```
|
||||||
|
|
||||||
|
See the demo of running LLaMA2-7B on Intel Arc GPU below.
|
||||||
|
|
||||||
<video src="https://llm-assets.readthedocs.io/en/latest/_images/ollama-linux-arc.mp4" width="100%" controls></video>
|
<video src="https://llm-assets.readthedocs.io/en/latest/_images/ollama-linux-arc.mp4" width="100%" controls></video>
|
||||||
|
|
||||||
|
|
||||||
## Quickstart
|
## Quickstart
|
||||||
|
|
||||||
### 1 Install IPEX-LLM with Ollama Binaries
|
### 1 Install IPEX-LLM with Ollama Binaries
|
||||||
|
|
@ -45,16 +51,16 @@ source /opt/intel/oneapi/setvars.sh
|
||||||
|
|
||||||
The console will display messages similar to the following:
|
The console will display messages similar to the following:
|
||||||
|
|
||||||
<a href="https://llm-assets.readthedocs.io/en/latest/_images/webui_quickstart_chat.png" target="_blank">
|
<a href="https://llm-assets.readthedocs.io/en/latest/_images/ollama_serve.png" target="_blank">
|
||||||
<img src="https://llm-assets.readthedocs.io/en/latest/_images/ollama_serve.png" width=100%; />
|
<img src="https://llm-assets.readthedocs.io/en/latest/_images/ollama_serve.png" width=100%; />
|
||||||
</a>
|
</a>
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
### 4 Pull Model
|
### 4 Pull Model
|
||||||
Keep the Ollama service on and open a new terminal and pull a model, e.g. `dolphin-phi:latest`:
|
Keep the Ollama service on and open another terminal and run `./ollama pull <model_name>` to automatically pull a model. e.g. `dolphin-phi:latest`:
|
||||||
|
|
||||||
<a href="https://llm-assets.readthedocs.io/en/latest/_images/webui_quickstart_chat.png" target="_blank">
|
<a href="https://llm-assets.readthedocs.io/en/latest/_images/ollama_pull.png" target="_blank">
|
||||||
<img src="https://llm-assets.readthedocs.io/en/latest/_images/ollama_pull.png" width=100%; />
|
<img src="https://llm-assets.readthedocs.io/en/latest/_images/ollama_pull.png" width=100%; />
|
||||||
</a>
|
</a>
|
||||||
|
|
||||||
|
|
@ -77,7 +83,7 @@ curl http://localhost:11434/api/generate -d '
|
||||||
|
|
||||||
An example output of using model `doplphin-phi` looks like the following:
|
An example output of using model `doplphin-phi` looks like the following:
|
||||||
|
|
||||||
<a href="https://llm-assets.readthedocs.io/en/latest/_images/webui_quickstart_chat.png" target="_blank">
|
<a href="https://llm-assets.readthedocs.io/en/latest/_images/ollama_curl.png" target="_blank">
|
||||||
<img src="https://llm-assets.readthedocs.io/en/latest/_images/ollama_curl.png" width=100%; />
|
<img src="https://llm-assets.readthedocs.io/en/latest/_images/ollama_curl.png" width=100%; />
|
||||||
</a>
|
</a>
|
||||||
|
|
||||||
|
|
@ -99,6 +105,6 @@ source /opt/intel/oneapi/setvars.sh
|
||||||
|
|
||||||
An example process of interacting with model with `ollama run` looks like the following:
|
An example process of interacting with model with `ollama run` looks like the following:
|
||||||
|
|
||||||
<a href="https://llm-assets.readthedocs.io/en/latest/_images/webui_quickstart_chat.png" target="_blank">
|
<a href="https://llm-assets.readthedocs.io/en/latest/_images/ollama_run_1.png" target="_blank">
|
||||||
<img src="https://llm-assets.readthedocs.io/en/latest/_images/ollama_run_1.png" width=100%; /><img src="https://llm-assets.readthedocs.io/en/latest/_images/ollama_run_2.png" width=100%; />
|
<img src="https://llm-assets.readthedocs.io/en/latest/_images/ollama_run_1.png" width=100%; /><img src="https://llm-assets.readthedocs.io/en/latest/_images/ollama_run_2.png" width=100%; />
|
||||||
</a>
|
</a>
|
||||||
|
|
|
||||||
|
|
@ -0,0 +1,151 @@
|
||||||
|
# Run Open WebUI on Linux with Intel GPU
|
||||||
|
|
||||||
|
[Open WebUI](https://github.com/open-webui/open-webui) is a user friendly GUI for running LLM locally; by porting it to [`ipex-llm`](https://github.com/intel-analytics/ipex-llm), users can now easily run LLM in [Open WebUI](https://github.com/open-webui/open-webui) on Intel **GPU** *(e.g., local PC with iGPU, discrete GPU such as Arc, Flex and Max)*.
|
||||||
|
|
||||||
|
See the demo of running Mistral:7B on Intel Arc A770 below.
|
||||||
|
|
||||||
|
<video src="https://llm-assets.readthedocs.io/en/latest/_images/open_webui_demo.mp4" width="100%" controls></video>
|
||||||
|
|
||||||
|
## Quickstart
|
||||||
|
|
||||||
|
This quickstart guide walks you through setting up and using [Open WebUI](https://github.com/open-webui/open-webui) with Ollama (using the C++ interface of [`ipex-llm`](https://github.com/intel-analytics/ipex-llm) as an accelerated backend).
|
||||||
|
|
||||||
|
|
||||||
|
### 1 Run Ollama on Linux with Intel GPU
|
||||||
|
|
||||||
|
Follow the instructions on the [Run Ollama on Linux with Intel GPU](ollama_quickstart.html) to install and run "Ollam Serve". Please ensure that the Ollama server continues to run while you're using the Open WebUI.
|
||||||
|
|
||||||
|
### 2 Install and Run Open-Webui
|
||||||
|
|
||||||
|
|
||||||
|
#### Installation
|
||||||
|
|
||||||
|
```eval_rst
|
||||||
|
.. note::
|
||||||
|
|
||||||
|
Package version requirements for running Open WebUI: Node.js (>= 20.10) or Bun (>= 1.0.21), Python (>= 3.11)
|
||||||
|
```
|
||||||
|
|
||||||
|
1. Run below commands to install Node.js & npm. Once the installation is complete, verify the installation by running ```node -v``` and ```npm -v``` to check the versions of Node.js and npm, respectively.
|
||||||
|
```sh
|
||||||
|
sudo apt update
|
||||||
|
sudo apt install nodejs
|
||||||
|
sudo apt install npm
|
||||||
|
```
|
||||||
|
|
||||||
|
2. Use `git` to clone the [open-webui repo](https://github.com/open-webui/open-webui.git), or download the open-webui source code zip from [this link](https://github.com/open-webui/open-webui/archive/refs/heads/main.zip) and unzip it to a directory, e.g. `~/open-webui`.
|
||||||
|
|
||||||
|
3. Run below commands to install Open WebUI.
|
||||||
|
```sh
|
||||||
|
cd ~/open-webui/
|
||||||
|
cp -RPp .env.example .env # Copy required .env file
|
||||||
|
|
||||||
|
# Build frontend
|
||||||
|
npm i
|
||||||
|
npm run build
|
||||||
|
|
||||||
|
# Install Dependencies
|
||||||
|
cd ./backend
|
||||||
|
pip install -r requirements.txt -U
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Start the service
|
||||||
|
|
||||||
|
Run below commands to start the service:
|
||||||
|
|
||||||
|
```sh
|
||||||
|
export no_proxy=localhost,127.0.0.1
|
||||||
|
bash start.sh
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
```eval_rst
|
||||||
|
.. note::
|
||||||
|
|
||||||
|
If you have difficulty accessing the huggingface repositories, you may use a mirror, e.g. add `export HF_ENDPOINT=https://hf-mirror.com` before running `bash start.sh`.
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Access the WebUI
|
||||||
|
Upon successful launch, URLs to access the WebUI will be displayed in the terminal. Open the provided local URL in your browser to interact with the WebUI, e.g. http://localhost:8080/.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
### 3. Using Open-Webui
|
||||||
|
|
||||||
|
```eval_rst
|
||||||
|
.. note::
|
||||||
|
|
||||||
|
For detailed information about how to use Open WebUI, visit the README of `open-webui official repository <https://github.com/open-webui/open-webui>`_.
|
||||||
|
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Log-in
|
||||||
|
|
||||||
|
If this is your first time using it, you need to register. After registering, log in with the registered account to access the interface.
|
||||||
|
|
||||||
|
<a href="https://llm-assets.readthedocs.io/en/latest/_images/open_webui_signup.png" target="_blank">
|
||||||
|
<img src="https://llm-assets.readthedocs.io/en/latest/_images/open_webui_signup.png" width="100%" />
|
||||||
|
</a>
|
||||||
|
|
||||||
|
|
||||||
|
<a href="https://llm-assets.readthedocs.io/en/latest/_images/open_webui_login.png" target="_blank">
|
||||||
|
<img src="https://llm-assets.readthedocs.io/en/latest/_images/open_webui_login.png" width="100%" />
|
||||||
|
</a>
|
||||||
|
|
||||||
|
#### Configure `Ollama` service URL
|
||||||
|
|
||||||
|
Access the Ollama settings through **Settings -> Connections** in the menu. By default, the **Ollama Base URL** is preset to https://localhost:11434, as illustrated in the snapshot below. To verify the status of the Ollama service connection, click the **Refresh button** located next to the textbox. If the WebUI is unable to establish a connection with the Ollama server, you will see an error message stating, `WebUI could not connect to Ollama`.
|
||||||
|
|
||||||
|
|
||||||
|
<a href="https://llm-assets.readthedocs.io/en/latest/_images/open_webui_settings_0.png" target="_blank">
|
||||||
|
<img src="https://llm-assets.readthedocs.io/en/latest/_images/open_webui_settings_0.png" width="100%" />
|
||||||
|
</a>
|
||||||
|
|
||||||
|
If the connection is successful, you will see a message stating `Service Connection Verified`, as illustrated below.
|
||||||
|
|
||||||
|
<a href="https://llm-assets.readthedocs.io/en/latest/_images/open_webui_settings.png" target="_blank">
|
||||||
|
<img src="https://llm-assets.readthedocs.io/en/latest/_images/open_webui_settings.png" width="100%" />
|
||||||
|
</a>
|
||||||
|
|
||||||
|
```eval_rst
|
||||||
|
.. note::
|
||||||
|
|
||||||
|
If you want to use an Ollama server hosted at a different URL, simply update the **Ollama Base URL** to the new URL and press the **Refresh** button to re-confirm the connection to Ollama.
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Pull Model
|
||||||
|
|
||||||
|
Go to **Settings -> Models** in the menu, choose a model under **Pull a model from Ollama.com** using the drop-down menu, and then hit the **Download** button on the right. Ollama will automatically download the selected model for you.
|
||||||
|
|
||||||
|
<a href="https://llm-assets.readthedocs.io/en/latest/_images/open_webui_pull_models.png" target="_blank">
|
||||||
|
<img src="https://llm-assets.readthedocs.io/en/latest/_images/open_webui_pull_models.png" width="100%" />
|
||||||
|
</a>
|
||||||
|
|
||||||
|
#### Chat with the Model
|
||||||
|
|
||||||
|
Start new conversations with **New chat** in the left-side menu.
|
||||||
|
|
||||||
|
On the right-side, choose a downloaded model from the **Select a model** drop-down menu at the top, input your questions into the **Send a Message** textbox at the bottom, and click the button on the right to get responses.
|
||||||
|
|
||||||
|
<a href="https://llm-assets.readthedocs.io/en/latest/_images/open_webui_select_model.png" target="_blank">
|
||||||
|
<img src="https://llm-assets.readthedocs.io/en/latest/_images/open_webui_select_model.png" width="100%" />
|
||||||
|
</a>
|
||||||
|
|
||||||
|
|
||||||
|
<br/>
|
||||||
|
Additionally, you can drag and drop a document into the textbox, allowing the LLM to access its contents. The LLM will then generate answers based on the document provided.
|
||||||
|
|
||||||
|
<a href="https://llm-assets.readthedocs.io/en/latest/_images/open_webui_chat_2.png" target="_blank">
|
||||||
|
<img src="https://llm-assets.readthedocs.io/en/latest/_images/open_webui_chat_2.png" width="100%" />
|
||||||
|
</a>
|
||||||
|
|
||||||
|
#### Exit Open-Webui
|
||||||
|
|
||||||
|
To shut down the open-webui server, use **Ctrl+C** in the terminal where the open-webui server is runing, then close your browser tab.
|
||||||
|
|
||||||
|
|
||||||
|
### 4. Troubleshooting
|
||||||
|
|
||||||
|
##### Error `No module named 'torch._C`
|
||||||
|
|
||||||
|
When you encounter the error ``ModuleNotFoundError: No module named 'torch._C'`` after executing ```bash start.sh```, you can resolve it by reinstalling PyTorch. First, use ```pip uninstall torch``` to remove the existing PyTorch installation, and then reinstall it along with its dependencies by running ```pip install torch torchvision torchaudio```.
|
||||||
|
|
@ -33,7 +33,7 @@
|
||||||
It is built on top of <strong>Intel Extension for PyTorch</strong> (<strong><code><span>IPEX</span></code></strong>), as well as the excellent work of <strong><code><span>llama.cpp</span></code></strong>, <strong><code><span>bitsandbytes</span></code></strong>, <strong><code><span>vLLM</span></code></strong>, <strong><code><span>qlora</span></code></strong>, <strong><code><span>AutoGPTQ</span></code></strong>, <strong><code><span>AutoAWQ</span></code></strong>, etc.
|
It is built on top of <strong>Intel Extension for PyTorch</strong> (<strong><code><span>IPEX</span></code></strong>), as well as the excellent work of <strong><code><span>llama.cpp</span></code></strong>, <strong><code><span>bitsandbytes</span></code></strong>, <strong><code><span>vLLM</span></code></strong>, <strong><code><span>qlora</span></code></strong>, <strong><code><span>AutoGPTQ</span></code></strong>, <strong><code><span>AutoAWQ</span></code></strong>, etc.
|
||||||
</li></em>
|
</li></em>
|
||||||
<li><em>
|
<li><em>
|
||||||
It provides seamless integration with <a href=doc/LLM/Quickstart/llama_cpp_quickstart.html>llama.cpp</a>, <a href=doc/LLM/Quickstart/webui_quickstart.html>Text-Generation-WebUI</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels>HuggingFace transformers</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/LLM-Finetuning>HuggingFace PEFT</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/LangChain >LangChain</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/LlamaIndex >LlamaIndex</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/Deepspeed-AutoTP >DeepSpeed-AutoTP</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/vLLM-Serving >vLLM</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/src/ipex_llm/serving/fastchat>FastChat</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/LLM-Finetuning/DPO>HuggingFace TRL</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/Applications/autogen >AutoGen</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/ModelScope-Models >ModeScope</a>, etc.
|
It provides seamless integration with <a href=doc/LLM/Quickstart/llama_cpp_quickstart.html>llama.cpp</a>, <a href=doc/LLM/Quickstart/ollama_quickstart.html>ollama</a>, <a href=doc/LLM/Quickstart/webui_quickstart.html>Text-Generation-WebUI</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels>HuggingFace transformers</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/LLM-Finetuning>HuggingFace PEFT</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/LangChain >LangChain</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/LlamaIndex >LlamaIndex</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/Deepspeed-AutoTP >DeepSpeed-AutoTP</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/vLLM-Serving >vLLM</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/src/ipex_llm/serving/fastchat>FastChat</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/LLM-Finetuning/DPO>HuggingFace TRL</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/Applications/autogen >AutoGen</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/ModelScope-Models >ModeScope</a>, etc.
|
||||||
</li></em>
|
</li></em>
|
||||||
<li><em>
|
<li><em>
|
||||||
<strong>50+ models</strong> have been optimized/verified on <code><span>ipex-llm</span></code> (including LLaMA2, Mistral, Mixtral, Gemma, LLaVA, Whisper, ChatGLM, Baichuan, Qwen, RWKV, and more); see the complete list <a href=#verified-models>here</a>.
|
<strong>50+ models</strong> have been optimized/verified on <code><span>ipex-llm</span></code> (including LLaMA2, Mistral, Mixtral, Gemma, LLaVA, Whisper, ChatGLM, Baichuan, Qwen, RWKV, and more); see the complete list <a href=#verified-models>here</a>.
|
||||||
|
|
@ -44,6 +44,8 @@
|
||||||
************************************************
|
************************************************
|
||||||
Latest update 🔥
|
Latest update 🔥
|
||||||
************************************************
|
************************************************
|
||||||
|
|
||||||
|
* [2024/04] ``ipex-llm`` now provides C++ interface, which can be used as an accelerated backend for running `llama.cpp <doc/LLM/Quickstart/llama_cpp_quickstart.html>`_ and `ollama <doc/LLM/Quickstart/ollama_quickstart.html>`_ on Intel GPU.
|
||||||
* [2024/03] ``bigdl-llm`` has now become ``ipex-llm`` (see the migration guide `here <doc/LLM/Quickstart/bigdl_llm_migration.html>`_); you may find the original ``BigDL`` project `here <https://github.com/intel-analytics/bigdl-2.x>`_.
|
* [2024/03] ``bigdl-llm`` has now become ``ipex-llm`` (see the migration guide `here <doc/LLM/Quickstart/bigdl_llm_migration.html>`_); you may find the original ``BigDL`` project `here <https://github.com/intel-analytics/bigdl-2.x>`_.
|
||||||
* [2024/02] ``ipex-llm`` now supports directly loading model from `ModelScope <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/ModelScope-Models>`_ (`魔搭 <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/ModelScope-Models>`_).
|
* [2024/02] ``ipex-llm`` now supports directly loading model from `ModelScope <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/ModelScope-Models>`_ (`魔搭 <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/ModelScope-Models>`_).
|
||||||
* [2024/02] ``ipex-llm`` added inital **INT2** support (based on llama.cpp `IQ2 <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels/Advanced-Quantizations/GGUF-IQ2>`_ mechanism), which makes it possible to run large-size LLM (e.g., Mixtral-8x7B) on Intel GPU with 16GB VRAM.
|
* [2024/02] ``ipex-llm`` added inital **INT2** support (based on llama.cpp `IQ2 <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels/Advanced-Quantizations/GGUF-IQ2>`_ mechanism), which makes it possible to run large-size LLM (e.g., Mixtral-8x7B) on Intel GPU with 16GB VRAM.
|
||||||
|
|
@ -106,6 +108,10 @@ See the **optimized performance** of ``chatglm2-6b`` and ``llama-2-13b-chat`` mo
|
||||||
``ipex-llm`` Quickstart
|
``ipex-llm`` Quickstart
|
||||||
************************************************
|
************************************************
|
||||||
|
|
||||||
|
============================================
|
||||||
|
Install ``ipex-llm``
|
||||||
|
============================================
|
||||||
|
|
||||||
* `Windows GPU <doc/LLM/Quickstart/install_windows_gpu.html>`_: installing ``ipex-llm`` on Windows with Intel GPU
|
* `Windows GPU <doc/LLM/Quickstart/install_windows_gpu.html>`_: installing ``ipex-llm`` on Windows with Intel GPU
|
||||||
* `Linux GPU <doc/LLM/Quickstart/install_linux_gpu.html>`_: installing ``ipex-llm`` on Linux with Intel GPU
|
* `Linux GPU <doc/LLM/Quickstart/install_linux_gpu.html>`_: installing ``ipex-llm`` on Linux with Intel GPU
|
||||||
* `Docker <https://github.com/intel-analytics/ipex-llm/tree/main/docker/llm>`_: using ``ipex-llm`` dockers on Intel CPU and GPU
|
* `Docker <https://github.com/intel-analytics/ipex-llm/tree/main/docker/llm>`_: using ``ipex-llm`` dockers on Intel CPU and GPU
|
||||||
|
|
@ -118,7 +124,8 @@ See the **optimized performance** of ``chatglm2-6b`` and ``llama-2-13b-chat`` mo
|
||||||
Run ``ipex-llm``
|
Run ``ipex-llm``
|
||||||
============================================
|
============================================
|
||||||
|
|
||||||
* `llama.cpp <doc/LLM/Quickstart/llama_cpp_quickstart.html>`_: running **ipex-llm for llama.cpp** (*using C++ interface of* ``ipex-llm`` *as an accelerated backend for* ``llama.cpp`` *on Intel GPU*)
|
* `llama.cpp <doc/LLM/Quickstart/llama_cpp_quickstart.html>`_: running **llama.cpp** (*using C++ interface of* ``ipex-llm`` *as an accelerated backend for* ``llama.cpp``) on Intel GPU
|
||||||
|
* `ollama <doc/LLM/Quickstart/ollama_quickstart.html>`_: running **ollama** (*using C++ interface of* ``ipex-llm`` *as an accelerated backend for* ``ollama``) on Intel GPU
|
||||||
* `vLLM <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/vLLM-Serving>`_: running ``ipex-llm`` in ``vLLM`` on both Intel `GPU <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/vLLM-Serving>`_ and `CPU <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/vLLM-Serving>`_
|
* `vLLM <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/vLLM-Serving>`_: running ``ipex-llm`` in ``vLLM`` on both Intel `GPU <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/vLLM-Serving>`_ and `CPU <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/vLLM-Serving>`_
|
||||||
* `FastChat <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/src/ipex_llm/serving/fastchat>`_: running ``ipex-llm`` in ``FastChat`` serving on on both Intel GPU and CPU
|
* `FastChat <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/src/ipex_llm/serving/fastchat>`_: running ``ipex-llm`` in ``FastChat`` serving on on both Intel GPU and CPU
|
||||||
* `LangChain-Chatchat RAG <https://github.com/intel-analytics/Langchain-Chatchat>`_: running ``ipex-llm`` in ``LangChain-Chatchat`` (*Knowledge Base QA using* **RAG** *pipeline*)
|
* `LangChain-Chatchat RAG <https://github.com/intel-analytics/Langchain-Chatchat>`_: running ``ipex-llm`` in ``LangChain-Chatchat`` (*Knowledge Base QA using* **RAG** *pipeline*)
|
||||||
|
|
|
||||||
|
|
@ -30,6 +30,6 @@ Taking example above, the script will fork 3 processes, each for one xpu, to exe
|
||||||
## Results
|
## Results
|
||||||
We follow [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) to record our metrics, `acc_norm` for `hellaswag` and `arc_challenge`, `mc2` for `truthful_qa` and `acc` for `mmlu`. For `mmlu`, there are 57 subtasks which means users may need to average them manually to get final result.
|
We follow [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) to record our metrics, `acc_norm` for `hellaswag` and `arc_challenge`, `mc2` for `truthful_qa` and `acc` for `mmlu`. For `mmlu`, there are 57 subtasks which means users may need to average them manually to get final result.
|
||||||
## Summarize the results
|
## Summarize the results
|
||||||
"""python
|
```python
|
||||||
python make_table.py <input_dir>
|
python make_table.py <input_dir>
|
||||||
"""
|
```
|
||||||
|
|
|
||||||
|
|
@ -48,7 +48,7 @@ task_to_metric = dict(
|
||||||
drop='f1'
|
drop='f1'
|
||||||
)
|
)
|
||||||
|
|
||||||
def parse_precision(precision, model="bigdl-llm"):
|
def parse_precision(precision, model="ipex-llm"):
|
||||||
result = match(r"([a-zA-Z_]+)(\d+)([a-zA-Z_\d]*)", precision)
|
result = match(r"([a-zA-Z_]+)(\d+)([a-zA-Z_\d]*)", precision)
|
||||||
datatype = result.group(1)
|
datatype = result.group(1)
|
||||||
bit = int(result.group(2))
|
bit = int(result.group(2))
|
||||||
|
|
@ -62,6 +62,6 @@ def parse_precision(precision, model="bigdl-llm"):
|
||||||
else:
|
else:
|
||||||
if model == "hf-causal":
|
if model == "hf-causal":
|
||||||
return f"bnb_type={precision}"
|
return f"bnb_type={precision}"
|
||||||
if model == "bigdl-llm":
|
if model == "ipex-llm":
|
||||||
return f"load_in_low_bit={precision}"
|
return f"load_in_low_bit={precision}"
|
||||||
raise RuntimeError(f"invald precision {precision}")
|
raise RuntimeError(f"invald precision {precision}")
|
||||||
|
|
|
||||||
|
|
@ -35,7 +35,7 @@ def force_decrease_order(Reorderer):
|
||||||
utils.Reorderer = force_decrease_order(utils.Reorderer)
|
utils.Reorderer = force_decrease_order(utils.Reorderer)
|
||||||
|
|
||||||
|
|
||||||
class BigDLLM(AutoCausalLM):
|
class IPEXLLM(AutoCausalLM):
|
||||||
AUTO_MODEL_CLASS = AutoModelForCausalLM
|
AUTO_MODEL_CLASS = AutoModelForCausalLM
|
||||||
AutoCausalLM_ARGS = inspect.getfullargspec(AutoCausalLM.__init__).args
|
AutoCausalLM_ARGS = inspect.getfullargspec(AutoCausalLM.__init__).args
|
||||||
def __init__(self, *args, **kwargs):
|
def __init__(self, *args, **kwargs):
|
||||||
|
|
@ -20,8 +20,8 @@ import os
|
||||||
from harness_to_leaderboard import *
|
from harness_to_leaderboard import *
|
||||||
from lm_eval import tasks, evaluator, utils, models
|
from lm_eval import tasks, evaluator, utils, models
|
||||||
|
|
||||||
from bigdl_llm import BigDLLM
|
from ipexllm import IPEXLLM
|
||||||
models.MODEL_REGISTRY['bigdl-llm'] = BigDLLM # patch bigdl-llm to harness
|
models.MODEL_REGISTRY['ipex-llm'] = IPEXLLM # patch ipex-llm to harness
|
||||||
|
|
||||||
logging.getLogger("openai").setLevel(logging.WARNING)
|
logging.getLogger("openai").setLevel(logging.WARNING)
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -22,8 +22,9 @@ from lm_eval import tasks, evaluator, utils, models
|
||||||
from multiprocessing import Queue, Process
|
from multiprocessing import Queue, Process
|
||||||
import multiprocessing as mp
|
import multiprocessing as mp
|
||||||
from contextlib import redirect_stdout, redirect_stderr
|
from contextlib import redirect_stdout, redirect_stderr
|
||||||
from bigdl_llm import BigDLLM
|
|
||||||
models.MODEL_REGISTRY['bigdl-llm'] = BigDLLM # patch bigdl-llm to harness
|
from ipexllm import IPEXLLM
|
||||||
|
models.MODEL_REGISTRY['ipex-llm'] = IPEXLLM # patch ipex-llm to harness
|
||||||
|
|
||||||
logging.getLogger("openai").setLevel(logging.WARNING)
|
logging.getLogger("openai").setLevel(logging.WARNING)
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -20,6 +20,6 @@ python run.py --model_path meta-llama/Llama-2-7b-chat-hf --precisions float16 sy
|
||||||
- If you want to test perplexity on pre-downloaded datasets, please specify the `<path/to/dataset>` in the `dataset_path` argument in your command.
|
- If you want to test perplexity on pre-downloaded datasets, please specify the `<path/to/dataset>` in the `dataset_path` argument in your command.
|
||||||
|
|
||||||
## Summarize the results
|
## Summarize the results
|
||||||
"""python
|
```python
|
||||||
python make_table.py <input_dir>
|
python make_table.py <input_dir>
|
||||||
"""
|
```
|
||||||
|
|
|
||||||
|
|
@ -11,7 +11,7 @@ mkdir autogen
|
||||||
cd autogen
|
cd autogen
|
||||||
|
|
||||||
# create respective conda environment
|
# create respective conda environment
|
||||||
conda create -n autogen python=3.9
|
conda create -n autogen python=3.11
|
||||||
conda activate autogen
|
conda activate autogen
|
||||||
|
|
||||||
# install fastchat-adapted ipex-llm
|
# install fastchat-adapted ipex-llm
|
||||||
|
|
|
||||||
|
|
@ -10,7 +10,7 @@ To run this example with IPEX-LLM, we have some recommended requirements for you
|
||||||
### 1. Install
|
### 1. Install
|
||||||
We suggest using conda to manage environment:
|
We suggest using conda to manage environment:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9
|
conda create -n llm python=3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install ipex-llm[all] # install ipex-llm with 'all' option
|
pip install ipex-llm[all] # install ipex-llm with 'all' option
|
||||||
|
|
|
||||||
|
|
@ -10,7 +10,7 @@ model = AutoModelForCausalLM.from_pretrained(model_name_or_path, load_in_4bit=Tr
|
||||||
## Prepare Environment
|
## Prepare Environment
|
||||||
We suggest using conda to manage environment:
|
We suggest using conda to manage environment:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9
|
conda create -n llm python=3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install --pre --upgrade ipex-llm[all]
|
pip install --pre --upgrade ipex-llm[all]
|
||||||
|
|
|
||||||
|
|
@ -2,7 +2,7 @@
|
||||||
|
|
||||||
#### 1. Install Dependencies
|
#### 1. Install Dependencies
|
||||||
|
|
||||||
Install necessary packages (here Python 3.9 is our test environment):
|
Install necessary packages (here Python 3.11 is our test environment):
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
bash install.sh
|
bash install.sh
|
||||||
|
|
|
||||||
|
|
@ -34,7 +34,7 @@ In the example [generate.py](./generate.py), we show a basic use case for a AWQ
|
||||||
We suggest using conda to manage environment:
|
We suggest using conda to manage environment:
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9
|
conda create -n llm python=3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install autoawq==0.1.8 --no-deps
|
pip install autoawq==0.1.8 --no-deps
|
||||||
|
|
|
||||||
|
|
@ -25,7 +25,7 @@ We suggest using conda to manage the Python environment. For more information ab
|
||||||
|
|
||||||
After installing conda, create a Python environment for IPEX-LLM:
|
After installing conda, create a Python environment for IPEX-LLM:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9 # recommend to use Python 3.9
|
conda create -n llm python=3.11 # recommend to use Python 3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
||||||
|
|
|
||||||
|
|
@ -9,7 +9,7 @@ In the example [generate.py](./generate.py), we show a basic use case for a Llam
|
||||||
### 1. Install
|
### 1. Install
|
||||||
We suggest using conda to manage environment:
|
We suggest using conda to manage environment:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9
|
conda create -n llm python=3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install ipex-llm[all] # install ipex-llm with 'all' option
|
pip install ipex-llm[all] # install ipex-llm with 'all' option
|
||||||
|
|
|
||||||
|
|
@ -16,7 +16,7 @@ We suggest using conda to manage the Python environment. For more information ab
|
||||||
|
|
||||||
After installing conda, create a Python environment for IPEX-LLM:
|
After installing conda, create a Python environment for IPEX-LLM:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9 # recommend to use Python 3.9
|
conda create -n llm python=3.11 # recommend to use Python 3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
||||||
|
|
|
||||||
|
|
@ -16,7 +16,7 @@ We suggest using conda to manage the Python environment. For more information ab
|
||||||
|
|
||||||
After installing conda, create a Python environment for IPEX-LLM:
|
After installing conda, create a Python environment for IPEX-LLM:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9 # recommend to use Python 3.9
|
conda create -n llm python=3.11 # recommend to use Python 3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
||||||
|
|
|
||||||
|
|
@ -9,7 +9,7 @@ In the example [generate.py](./generate.py), we show a basic use case for a Baic
|
||||||
### 1. Install
|
### 1. Install
|
||||||
We suggest using conda to manage environment:
|
We suggest using conda to manage environment:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9
|
conda create -n llm python=3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install ipex-llm[all] # install ipex-llm with 'all' option
|
pip install ipex-llm[all] # install ipex-llm with 'all' option
|
||||||
|
|
|
||||||
|
|
@ -9,7 +9,7 @@ In the example [generate.py](./generate.py), we show a basic use case for a Baic
|
||||||
### 1. Install
|
### 1. Install
|
||||||
We suggest using conda to manage environment:
|
We suggest using conda to manage environment:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9
|
conda create -n llm python=3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install ipex-llm[all] # install ipex-llm with 'all' option
|
pip install ipex-llm[all] # install ipex-llm with 'all' option
|
||||||
|
|
|
||||||
|
|
@ -9,7 +9,7 @@ In the example [generate.py](./generate.py), we show a basic use case for a Blue
|
||||||
### 1. Install
|
### 1. Install
|
||||||
We suggest using conda to manage environment:
|
We suggest using conda to manage environment:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9
|
conda create -n llm python=3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
||||||
|
|
|
||||||
|
|
@ -16,10 +16,11 @@ We suggest using conda to manage the Python environment. For more information ab
|
||||||
|
|
||||||
After installing conda, create a Python environment for IPEX-LLM:
|
After installing conda, create a Python environment for IPEX-LLM:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9 # recommend to use Python 3.9
|
conda create -n llm python=3.11 # recommend to use Python 3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
||||||
|
pip install "transformers<4.34.1" # chatglm cannot work with transformers 4.34.1+
|
||||||
```
|
```
|
||||||
|
|
||||||
### 2. Run
|
### 2. Run
|
||||||
|
|
|
||||||
|
|
@ -10,7 +10,7 @@ In the example [generate.py](./generate.py), we show a basic use case for a Chat
|
||||||
### 1. Install
|
### 1. Install
|
||||||
We suggest using conda to manage environment:
|
We suggest using conda to manage environment:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9
|
conda create -n llm python=3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install ipex-llm[all] # install ipex-llm with 'all' option
|
pip install ipex-llm[all] # install ipex-llm with 'all' option
|
||||||
|
|
@ -80,7 +80,7 @@ In the example [streamchat.py](./streamchat.py), we show a basic use case for a
|
||||||
### 1. Install
|
### 1. Install
|
||||||
We suggest using conda to manage environment:
|
We suggest using conda to manage environment:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9
|
conda create -n llm python=3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install ipex-llm[all] # install ipex-llm with 'all' option
|
pip install ipex-llm[all] # install ipex-llm with 'all' option
|
||||||
|
|
|
||||||
|
|
@ -10,7 +10,7 @@ In the example [generate.py](./generate.py), we show a basic use case for a Chat
|
||||||
### 1. Install
|
### 1. Install
|
||||||
We suggest using conda to manage environment:
|
We suggest using conda to manage environment:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9
|
conda create -n llm python=3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install --pre --upgrade ipex-llm[all] # install ipex-llm with 'all' option
|
pip install --pre --upgrade ipex-llm[all] # install ipex-llm with 'all' option
|
||||||
|
|
@ -81,7 +81,7 @@ In the example [streamchat.py](./streamchat.py), we show a basic use case for a
|
||||||
### 1. Install
|
### 1. Install
|
||||||
We suggest using conda to manage environment:
|
We suggest using conda to manage environment:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9
|
conda create -n llm python=3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install --pre --upgrade ipex-llm[all] # install ipex-llm with 'all' option
|
pip install --pre --upgrade ipex-llm[all] # install ipex-llm with 'all' option
|
||||||
|
|
|
||||||
|
|
@ -9,7 +9,7 @@ In the example [generate.py](./generate.py), we show a basic use case for a Code
|
||||||
### 1. Install
|
### 1. Install
|
||||||
We suggest using conda to manage environment:
|
We suggest using conda to manage environment:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9
|
conda create -n llm python=3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install ipex-llm[all] # install ipex-llm with 'all' option
|
pip install ipex-llm[all] # install ipex-llm with 'all' option
|
||||||
|
|
|
||||||
|
|
@ -16,7 +16,7 @@ We suggest using conda to manage the Python environment. For more information ab
|
||||||
|
|
||||||
After installing conda, create a Python environment for IPEX-LLM:
|
After installing conda, create a Python environment for IPEX-LLM:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9 # recommend to use Python 3.9
|
conda create -n llm python=3.11 # recommend to use Python 3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
||||||
|
|
|
||||||
|
|
@ -9,7 +9,7 @@ In the example [generate.py](./generate.py), we show a basic use case for a Deci
|
||||||
### 1. Install
|
### 1. Install
|
||||||
We suggest using conda to manage environment:
|
We suggest using conda to manage environment:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9
|
conda create -n llm python=3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
||||||
|
|
|
||||||
|
|
@ -16,7 +16,7 @@ We suggest using conda to manage the Python environment. For more information ab
|
||||||
|
|
||||||
After installing conda, create a Python environment for IPEX-LLM:
|
After installing conda, create a Python environment for IPEX-LLM:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9 # recommend to use Python 3.9
|
conda create -n llm python=3.11 # recommend to use Python 3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
||||||
|
|
|
||||||
|
|
@ -9,7 +9,7 @@ In the example [generate.py](./generate.py), we show a basic use case for a Deep
|
||||||
### 1. Install
|
### 1. Install
|
||||||
We suggest using conda to manage environment:
|
We suggest using conda to manage environment:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9
|
conda create -n llm python=3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install ipex-llm[all] # install ipex-llm with 'all' option
|
pip install ipex-llm[all] # install ipex-llm with 'all' option
|
||||||
|
|
|
||||||
|
|
@ -12,7 +12,7 @@ We suggest using conda to manage the Python environment. For more information ab
|
||||||
|
|
||||||
After installing conda, create a Python environment for IPEX-LLM:
|
After installing conda, create a Python environment for IPEX-LLM:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9
|
conda create -n llm python=3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
||||||
|
|
|
||||||
|
|
@ -9,7 +9,7 @@ In the example [generate.py](./generate.py), we show a basic use case for a Doll
|
||||||
### 1. Install
|
### 1. Install
|
||||||
We suggest using conda to manage environment:
|
We suggest using conda to manage environment:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9
|
conda create -n llm python=3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install ipex-llm[all] # install ipex-llm with 'all' option
|
pip install ipex-llm[all] # install ipex-llm with 'all' option
|
||||||
|
|
|
||||||
|
|
@ -9,7 +9,7 @@ In the example [generate.py](./generate.py), we show a basic use case for a Doll
|
||||||
### 1. Install
|
### 1. Install
|
||||||
We suggest using conda to manage environment:
|
We suggest using conda to manage environment:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9
|
conda create -n llm python=3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install ipex-llm[all] # install ipex-llm with 'all' option
|
pip install ipex-llm[all] # install ipex-llm with 'all' option
|
||||||
|
|
|
||||||
|
|
@ -10,7 +10,7 @@ In the example [generate.py](./generate.py), we show a basic use case for a Falc
|
||||||
### 1. Install
|
### 1. Install
|
||||||
We suggest using conda to manage environment:
|
We suggest using conda to manage environment:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9
|
conda create -n llm python=3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install ipex-llm[all] # install ipex-llm with 'all' option
|
pip install ipex-llm[all] # install ipex-llm with 'all' option
|
||||||
|
|
|
||||||
|
|
@ -12,7 +12,7 @@ We suggest using conda to manage the Python environment. For more information ab
|
||||||
|
|
||||||
After installing conda, create a Python environment for IPEX-LLM:
|
After installing conda, create a Python environment for IPEX-LLM:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9 # recommend to use Python 3.9
|
conda create -n llm python=3.11 # recommend to use Python 3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
||||||
|
|
|
||||||
|
|
@ -11,7 +11,7 @@ We suggest using conda to manage the Python environment. For more information ab
|
||||||
|
|
||||||
After installing conda, create a Python environment for IPEX-LLM:
|
After installing conda, create a Python environment for IPEX-LLM:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9 # recommend to use Python 3.9
|
conda create -n llm python=3.11 # recommend to use Python 3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
||||||
|
|
|
||||||
|
|
@ -14,7 +14,7 @@ We suggest using conda to manage the Python environment. For more information ab
|
||||||
|
|
||||||
After installing conda, create a Python environment for IPEX-LLM:
|
After installing conda, create a Python environment for IPEX-LLM:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9 # recommend to use Python 3.9
|
conda create -n llm python=3.11 # recommend to use Python 3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
|
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
|
||||||
|
|
@ -27,7 +27,7 @@ pip install transformers==4.38.1
|
||||||
#### 1.2 Installation on Windows
|
#### 1.2 Installation on Windows
|
||||||
We suggest using conda to manage environment:
|
We suggest using conda to manage environment:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9 libuv
|
conda create -n llm python=3.11 libuv
|
||||||
conda activate llm
|
conda activate llm
|
||||||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
|
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
|
||||||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||||
|
|
|
||||||
|
|
@ -11,7 +11,7 @@ We suggest using conda to manage the Python environment. For more information ab
|
||||||
|
|
||||||
After installing conda, create a Python environment for IPEX-LLM:
|
After installing conda, create a Python environment for IPEX-LLM:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9 # recommend to use Python 3.9
|
conda create -n llm python=3.11 # recommend to use Python 3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
||||||
|
|
|
||||||
|
|
@ -10,7 +10,7 @@ In the example [generate.py](./generate.py), we show a basic use case for a Inte
|
||||||
### 1. Install
|
### 1. Install
|
||||||
We suggest using conda to manage environment:
|
We suggest using conda to manage environment:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9
|
conda create -n llm python=3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install ipex-llm[all] # install ipex-llm with 'all' option
|
pip install ipex-llm[all] # install ipex-llm with 'all' option
|
||||||
|
|
|
||||||
|
|
@ -10,7 +10,7 @@ In the example [generate.py](./generate.py), we show a basic use case for a Inte
|
||||||
### 1. Install
|
### 1. Install
|
||||||
We suggest using conda to manage environment:
|
We suggest using conda to manage environment:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9
|
conda create -n llm python=3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install --pre --upgrade ipex-llm[all] # install ipex-llm with 'all' option
|
pip install --pre --upgrade ipex-llm[all] # install ipex-llm with 'all' option
|
||||||
|
|
|
||||||
|
|
@ -9,7 +9,7 @@ In the example [generate.py](./generate.py), we show a basic use case for a Llam
|
||||||
### 1. Install
|
### 1. Install
|
||||||
We suggest using conda to manage environment:
|
We suggest using conda to manage environment:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9
|
conda create -n llm python=3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install ipex-llm[all] # install ipex-llm with 'all' option
|
pip install ipex-llm[all] # install ipex-llm with 'all' option
|
||||||
|
|
|
||||||
|
|
@ -13,7 +13,7 @@ We suggest using conda to manage the Python environment. For more information ab
|
||||||
|
|
||||||
After installing conda, create a Python environment for IPEX-LLM:
|
After installing conda, create a Python environment for IPEX-LLM:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9 # recommend to use Python 3.9
|
conda create -n llm python=3.11 # recommend to use Python 3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
||||||
|
|
|
||||||
|
|
@ -13,7 +13,7 @@ We suggest using conda to manage the Python environment. For more information ab
|
||||||
|
|
||||||
After installing conda, create a Python environment for IPEX-LLM:
|
After installing conda, create a Python environment for IPEX-LLM:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9 # recommend to use Python 3.9
|
conda create -n llm python=3.11 # recommend to use Python 3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
# below command will install PyTorch CPU as default
|
# below command will install PyTorch CPU as default
|
||||||
|
|
|
||||||
|
|
@ -10,7 +10,7 @@ In the example [generate.py](./generate.py), we show a basic use case for a MOSS
|
||||||
### 1. Install
|
### 1. Install
|
||||||
We suggest using conda to manage environment:
|
We suggest using conda to manage environment:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9
|
conda create -n llm python=3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install ipex-llm[all] # install ipex-llm with 'all' option
|
pip install ipex-llm[all] # install ipex-llm with 'all' option
|
||||||
|
|
|
||||||
|
|
@ -9,7 +9,7 @@ In the example [generate.py](./generate.py), we show a basic use case for an MPT
|
||||||
### 1. Install
|
### 1. Install
|
||||||
We suggest using conda to manage environment:
|
We suggest using conda to manage environment:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9
|
conda create -n llm python=3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install ipex-llm[all] # install ipex-llm with 'all' option
|
pip install ipex-llm[all] # install ipex-llm with 'all' option
|
||||||
|
|
|
||||||
|
|
@ -16,7 +16,7 @@ We suggest using conda to manage the Python environment. For more information ab
|
||||||
|
|
||||||
After installing conda, create a Python environment for IPEX-LLM:
|
After installing conda, create a Python environment for IPEX-LLM:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9 # recommend to use Python 3.9
|
conda create -n llm python=3.11 # recommend to use Python 3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
||||||
|
|
|
||||||
|
|
@ -16,7 +16,7 @@ We suggest using conda to manage the Python environment. For more information ab
|
||||||
|
|
||||||
After installing conda, create a Python environment for IPEX-LLM:
|
After installing conda, create a Python environment for IPEX-LLM:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9 # recommend to use Python 3.9
|
conda create -n llm python=3.11 # recommend to use Python 3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
||||||
|
|
|
||||||
|
|
@ -16,7 +16,7 @@ We suggest using conda to manage the Python environment. For more information ab
|
||||||
|
|
||||||
After installing conda, create a Python environment for IPEX-LLM:
|
After installing conda, create a Python environment for IPEX-LLM:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9 # recommend to use Python 3.9
|
conda create -n llm python=3.11 # recommend to use Python 3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
||||||
|
|
|
||||||
|
|
@ -10,7 +10,7 @@ In the example [generate.py](./generate.py), we show a basic use case for a Phoe
|
||||||
### 1. Install
|
### 1. Install
|
||||||
We suggest using conda to manage environment:
|
We suggest using conda to manage environment:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9
|
conda create -n llm python=3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install ipex-llm[all] # install ipex-llm with 'all' option
|
pip install ipex-llm[all] # install ipex-llm with 'all' option
|
||||||
|
|
|
||||||
|
|
@ -11,7 +11,7 @@ We suggest using conda to manage the Python environment. For more information ab
|
||||||
|
|
||||||
After installing conda, create a Python environment for IPEX-LLM:
|
After installing conda, create a Python environment for IPEX-LLM:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9 # recommend to use Python 3.9
|
conda create -n llm python=3.11 # recommend to use Python 3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
||||||
|
|
|
||||||
|
|
@ -15,7 +15,7 @@ In the example [generate.py](./generate.py), we show a basic use case for a Qwen
|
||||||
We suggest using conda to manage environment:
|
We suggest using conda to manage environment:
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9
|
conda create -n llm python=3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install ipex-llm[all] # install ipex-llm with 'all' option
|
pip install ipex-llm[all] # install ipex-llm with 'all' option
|
||||||
|
|
|
||||||
|
|
@ -10,7 +10,7 @@ In the example [generate.py](./generate.py), we show a basic use case for a Qwen
|
||||||
### 1. Install
|
### 1. Install
|
||||||
We suggest using conda to manage environment:
|
We suggest using conda to manage environment:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9
|
conda create -n llm python=3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install --pre --upgrade ipex-llm[all] # install ipex-llm with 'all' option
|
pip install --pre --upgrade ipex-llm[all] # install ipex-llm with 'all' option
|
||||||
|
|
|
||||||
|
|
@ -10,7 +10,7 @@ In the example [generate.py](./generate.py), we show a basic use case for a RedP
|
||||||
### 1. Install
|
### 1. Install
|
||||||
We suggest using conda to manage environment:
|
We suggest using conda to manage environment:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9
|
conda create -n llm python=3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install ipex-llm[all] # install ipex-llm with 'all' option
|
pip install ipex-llm[all] # install ipex-llm with 'all' option
|
||||||
|
|
|
||||||
|
|
@ -11,7 +11,7 @@ We suggest using conda to manage the Python environment. For more information ab
|
||||||
|
|
||||||
After installing conda, create a Python environment for IPEX-LLM:
|
After installing conda, create a Python environment for IPEX-LLM:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9 # recommend to use Python 3.9
|
conda create -n llm python=3.11 # recommend to use Python 3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
||||||
|
|
|
||||||
|
|
@ -9,7 +9,7 @@ In the example [generate.py](./generate.py), we show a basic use case for a Skyw
|
||||||
### 1. Install
|
### 1. Install
|
||||||
We suggest using conda to manage environment:
|
We suggest using conda to manage environment:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9
|
conda create -n llm python=3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
||||||
|
|
|
||||||
|
|
@ -9,7 +9,7 @@ In the example [generate.py](./generate.py), we show a basic use case for a SOLA
|
||||||
### 1. Install
|
### 1. Install
|
||||||
We suggest using conda to manage environment:
|
We suggest using conda to manage environment:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9
|
conda create -n llm python=3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
||||||
|
|
|
||||||
|
|
@ -11,7 +11,7 @@ We suggest using conda to manage the Python environment. For more information ab
|
||||||
|
|
||||||
After installing conda, create a Python environment for IPEX-LLM:
|
After installing conda, create a Python environment for IPEX-LLM:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9 # recommend to use Python 3.9
|
conda create -n llm python=3.11 # recommend to use Python 3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
||||||
|
|
|
||||||
|
|
@ -9,7 +9,7 @@ In the example [generate.py](./generate.py), we show a basic use case for an Sta
|
||||||
### 1. Install
|
### 1. Install
|
||||||
We suggest using conda to manage environment:
|
We suggest using conda to manage environment:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9
|
conda create -n llm python=3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install ipex-llm[all] # install ipex-llm with 'all' option
|
pip install ipex-llm[all] # install ipex-llm with 'all' option
|
||||||
|
|
|
||||||
|
|
@ -9,7 +9,7 @@ In the example [generate.py](./generate.py), we show a basic use case for a Vicu
|
||||||
### 1. Install
|
### 1. Install
|
||||||
We suggest using conda to manage environment:
|
We suggest using conda to manage environment:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9
|
conda create -n llm python=3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install ipex-llm[all] # install ipex-llm with 'all' option
|
pip install ipex-llm[all] # install ipex-llm with 'all' option
|
||||||
|
|
|
||||||
|
|
@ -10,7 +10,7 @@ In the example [recognize.py](./recognize.py), we show a basic use case for a Wh
|
||||||
### 1. Install
|
### 1. Install
|
||||||
We suggest using conda to manage environment:
|
We suggest using conda to manage environment:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9
|
conda create -n llm python=3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install ipex-llm[all] # install ipex-llm with 'all' option
|
pip install ipex-llm[all] # install ipex-llm with 'all' option
|
||||||
|
|
@ -66,7 +66,7 @@ In the example [long-segment-recognize.py](./long-segment-recognize.py), we show
|
||||||
### 1. Install
|
### 1. Install
|
||||||
We suggest using conda to manage environment:
|
We suggest using conda to manage environment:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9
|
conda create -n llm python=3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install ipex-llm[all] # install ipex-llm with 'all' option
|
pip install ipex-llm[all] # install ipex-llm with 'all' option
|
||||||
|
|
|
||||||
|
|
@ -9,7 +9,7 @@ In the example [generate.py](./generate.py), we show a basic use case for a Wiza
|
||||||
### 1. Install
|
### 1. Install
|
||||||
We suggest using conda to manage environment:
|
We suggest using conda to manage environment:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9
|
conda create -n llm python=3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
||||||
|
|
|
||||||
|
|
@ -11,7 +11,7 @@ We suggest using conda to manage the Python environment. For more information ab
|
||||||
|
|
||||||
After installing conda, create a Python environment for IPEX-LLM:
|
After installing conda, create a Python environment for IPEX-LLM:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9
|
conda create -n llm python=3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
||||||
|
|
|
||||||
|
|
@ -13,7 +13,7 @@ We suggest using conda to manage the Python environment. For more information ab
|
||||||
|
|
||||||
After installing conda, create a Python environment for IPEX-LLM:
|
After installing conda, create a Python environment for IPEX-LLM:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9
|
conda create -n llm python=3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
||||||
|
|
|
||||||
|
|
@ -16,7 +16,7 @@ We suggest using conda to manage the Python environment. For more information ab
|
||||||
|
|
||||||
After installing conda, create a Python environment for IPEX-LLM:
|
After installing conda, create a Python environment for IPEX-LLM:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9 # recommend to use Python 3.9
|
conda create -n llm python=3.11 # recommend to use Python 3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
||||||
|
|
|
||||||
|
|
@ -5,7 +5,7 @@ In this example, we show a pipeline to apply IPEX-LLM low-bit optimizations (inc
|
||||||
## Prepare Environment
|
## Prepare Environment
|
||||||
We suggest using conda to manage environment:
|
We suggest using conda to manage environment:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9
|
conda create -n llm python=3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install --pre --upgrade ipex-llm[all]
|
pip install --pre --upgrade ipex-llm[all]
|
||||||
|
|
|
||||||
|
|
@ -5,7 +5,7 @@ In this example, we show a pipeline to apply IPEX-LLM low-bit optimizations (inc
|
||||||
## Prepare Environment
|
## Prepare Environment
|
||||||
We suggest using conda to manage environment:
|
We suggest using conda to manage environment:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9
|
conda create -n llm python=3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install --pre --upgrade ipex-llm[all]
|
pip install --pre --upgrade ipex-llm[all]
|
||||||
|
|
|
||||||
|
|
@ -10,7 +10,7 @@ In the example [generate.py](./generate.py), we show a basic use case for a Chat
|
||||||
### 1. Install
|
### 1. Install
|
||||||
We suggest using conda to manage environment:
|
We suggest using conda to manage environment:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9
|
conda create -n llm python=3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install --pre --upgrade ipex-llm[all] # install ipex-llm with 'all' option
|
pip install --pre --upgrade ipex-llm[all] # install ipex-llm with 'all' option
|
||||||
|
|
|
||||||
|
|
@ -7,7 +7,7 @@ In this example, we show a pipeline to convert a large language model to IPEX-LL
|
||||||
## Prepare Environment
|
## Prepare Environment
|
||||||
We suggest using conda to manage environment:
|
We suggest using conda to manage environment:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9
|
conda create -n llm python=3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install --pre --upgrade ipex-llm[all]
|
pip install --pre --upgrade ipex-llm[all]
|
||||||
|
|
|
||||||
|
|
@ -11,7 +11,7 @@ We suggest using conda to manage the Python environment. For more information ab
|
||||||
|
|
||||||
After installing conda, create a Python environment for IPEX-LLM:
|
After installing conda, create a Python environment for IPEX-LLM:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9 # recommend to use Python 3.9
|
conda create -n llm python=3.11 # recommend to use Python 3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
||||||
|
|
|
||||||
|
|
@ -11,7 +11,7 @@ We suggest using conda to manage the Python environment. For more information ab
|
||||||
|
|
||||||
After installing conda, create a Python environment for IPEX-LLM:
|
After installing conda, create a Python environment for IPEX-LLM:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9 # recommend to use Python 3.9
|
conda create -n llm python=3.11 # recommend to use Python 3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
||||||
|
|
|
||||||
|
|
@ -11,7 +11,7 @@ We suggest using conda to manage the Python environment. For more information ab
|
||||||
|
|
||||||
After installing conda, create a Python environment for IPEX-LLM:
|
After installing conda, create a Python environment for IPEX-LLM:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9 # recommend to use Python 3.9
|
conda create -n llm python=3.11 # recommend to use Python 3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
||||||
|
|
|
||||||
|
|
@ -11,7 +11,7 @@ We suggest using conda to manage the Python environment. For more information ab
|
||||||
|
|
||||||
After installing conda, create a Python environment for IPEX-LLM:
|
After installing conda, create a Python environment for IPEX-LLM:
|
||||||
```bash
|
```bash
|
||||||
conda create -n llm python=3.9 # recommend to use Python 3.9
|
conda create -n llm python=3.11 # recommend to use Python 3.11
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
|
||||||
|
|
|
||||||
Some files were not shown because too many files have changed in this diff Show more
Loading…
Reference in a new issue