Merge branch 'intel-analytics:main' into MargarettMao-parent_folder

This commit is contained in:
Wenjing Margaret Mao 2024-04-11 07:18:19 +08:00 committed by GitHub
commit 63a9a736be
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
295 changed files with 1756 additions and 600 deletions

View file

@ -19,7 +19,7 @@ runs:
sed -i 's/"bigdl-core-xe==" + CORE_XE_VERSION + "/"bigdl-core-xe/g' python/llm/setup.py sed -i 's/"bigdl-core-xe==" + CORE_XE_VERSION + "/"bigdl-core-xe/g' python/llm/setup.py
sed -i 's/"bigdl-core-xe-esimd==" + CORE_XE_VERSION + "/"bigdl-core-xe-esimd/g' python/llm/setup.py sed -i 's/"bigdl-core-xe-esimd==" + CORE_XE_VERSION + "/"bigdl-core-xe-esimd/g' python/llm/setup.py
sed -i 's/"bigdl-core-xe-21==" + CORE_XE_VERSION/"bigdl-core-xe-21"/g' python/llm/setup.py sed -i 's/"bigdl-core-xe-21==" + CORE_XE_VERSION/"bigdl-core-xe-21"/g' python/llm/setup.py
sed -i 's/"bigdl-core-xe-esimd-21==" + CORE_XE_VERSION + "/"bigdl-core-xe-esimd-21/g' python/llm/setup.py sed -i 's/"bigdl-core-xe-esimd-21==" + CORE_XE_VERSION/"bigdl-core-xe-esimd-21"/g' python/llm/setup.py
pip install requests pip install requests
if [[ ${{ runner.os }} == 'Linux' ]]; then if [[ ${{ runner.os }} == 'Linux' ]]; then

View file

@ -95,7 +95,7 @@ jobs:
strategy: strategy:
fail-fast: false fail-fast: false
matrix: matrix:
python-version: ["3.9"] python-version: ["3.11"]
model_name: ${{ fromJson(needs.set-matrix.outputs.model_name) }} model_name: ${{ fromJson(needs.set-matrix.outputs.model_name) }}
precision: ${{ fromJson(needs.set-matrix.outputs.precision) }} precision: ${{ fromJson(needs.set-matrix.outputs.precision) }}
device: [xpu] device: [xpu]
@ -193,10 +193,10 @@ jobs:
runs-on: ubuntu-latest runs-on: ubuntu-latest
steps: steps:
- uses: actions/checkout@v3 - uses: actions/checkout@v3
- name: Set up Python 3.9 - name: Set up Python 3.11
uses: actions/setup-python@v4 uses: actions/setup-python@v4
with: with:
python-version: 3.9 python-version: 3.11
- name: Install dependencies - name: Install dependencies
shell: bash shell: bash
run: | run: |
@ -230,10 +230,10 @@ jobs:
runs-on: ["self-hosted", "llm", "accuracy1", "accuracy-nightly"] runs-on: ["self-hosted", "llm", "accuracy1", "accuracy-nightly"]
steps: steps:
- uses: actions/checkout@f43a0e5ff2bd294095638e18286ca9a3d1956744 # actions/checkout@v3 - uses: actions/checkout@f43a0e5ff2bd294095638e18286ca9a3d1956744 # actions/checkout@v3
- name: Set up Python 3.9 - name: Set up Python 3.11
uses: actions/setup-python@v4 uses: actions/setup-python@v4
with: with:
python-version: 3.9 python-version: 3.11
- name: Install dependencies - name: Install dependencies
shell: bash shell: bash
run: | run: |

View file

@ -105,7 +105,7 @@ jobs:
strategy: strategy:
fail-fast: false fail-fast: false
matrix: matrix:
python-version: ["3.9"] python-version: ["3.11"]
model_name: ${{ fromJson(needs.set-matrix.outputs.model_name) }} model_name: ${{ fromJson(needs.set-matrix.outputs.model_name) }}
task: ${{ fromJson(needs.set-matrix.outputs.task) }} task: ${{ fromJson(needs.set-matrix.outputs.task) }}
precision: ${{ fromJson(needs.set-matrix.outputs.precision) }} precision: ${{ fromJson(needs.set-matrix.outputs.precision) }}
@ -189,7 +189,7 @@ jobs:
fi fi
python run_llb.py \ python run_llb.py \
--model bigdl-llm \ --model ipex-llm \
--pretrained ${MODEL_PATH} \ --pretrained ${MODEL_PATH} \
--precision ${{ matrix.precision }} \ --precision ${{ matrix.precision }} \
--device ${{ matrix.device }} \ --device ${{ matrix.device }} \
@ -216,10 +216,10 @@ jobs:
runs-on: ubuntu-latest runs-on: ubuntu-latest
steps: steps:
- uses: actions/checkout@f43a0e5ff2bd294095638e18286ca9a3d1956744 # actions/checkout@v3 - uses: actions/checkout@f43a0e5ff2bd294095638e18286ca9a3d1956744 # actions/checkout@v3
- name: Set up Python 3.9 - name: Set up Python 3.11
uses: actions/setup-python@v4 uses: actions/setup-python@v4
with: with:
python-version: 3.9 python-version: 3.11
- name: Install dependencies - name: Install dependencies
shell: bash shell: bash
run: | run: |
@ -243,10 +243,10 @@ jobs:
runs-on: ["self-hosted", "llm", "accuracy1", "accuracy-nightly"] runs-on: ["self-hosted", "llm", "accuracy1", "accuracy-nightly"]
steps: steps:
- uses: actions/checkout@f43a0e5ff2bd294095638e18286ca9a3d1956744 # actions/checkout@v3 - uses: actions/checkout@f43a0e5ff2bd294095638e18286ca9a3d1956744 # actions/checkout@v3
- name: Set up Python 3.9 - name: Set up Python 3.11
uses: actions/setup-python@v4 uses: actions/setup-python@v4
with: with:
python-version: 3.9 python-version: 3.11
- name: Install dependencies - name: Install dependencies
shell: bash shell: bash
run: | run: |

View file

@ -34,10 +34,10 @@ jobs:
include: include:
- os: windows - os: windows
instruction: AVX-VNNI-UT instruction: AVX-VNNI-UT
python-version: "3.9" python-version: "3.11"
- os: ubuntu-20.04-lts - os: ubuntu-20.04-lts
instruction: avx512 instruction: avx512
python-version: "3.9" python-version: "3.11"
runs-on: [self-hosted, llm, "${{matrix.instruction}}", "${{matrix.os}}"] runs-on: [self-hosted, llm, "${{matrix.instruction}}", "${{matrix.os}}"]
env: env:
ANALYTICS_ZOO_ROOT: ${{ github.workspace }} ANALYTICS_ZOO_ROOT: ${{ github.workspace }}

View file

@ -104,7 +104,7 @@ jobs:
strategy: strategy:
fail-fast: false fail-fast: false
matrix: matrix:
python-version: ["3.9"] python-version: ["3.11"]
model_name: ${{ fromJson(needs.set-matrix.outputs.model_name) }} model_name: ${{ fromJson(needs.set-matrix.outputs.model_name) }}
precision: ${{ fromJson(needs.set-matrix.outputs.precision) }} precision: ${{ fromJson(needs.set-matrix.outputs.precision) }}
seq_len: ${{ fromJson(needs.set-matrix.outputs.seq_len) }} seq_len: ${{ fromJson(needs.set-matrix.outputs.seq_len) }}
@ -201,10 +201,10 @@ jobs:
runs-on: ubuntu-latest runs-on: ubuntu-latest
steps: steps:
- uses: actions/checkout@f43a0e5ff2bd294095638e18286ca9a3d1956744 # actions/checkout@v3 - uses: actions/checkout@f43a0e5ff2bd294095638e18286ca9a3d1956744 # actions/checkout@v3
- name: Set up Python 3.9 - name: Set up Python 3.11
uses: actions/setup-python@v4 uses: actions/setup-python@v4
with: with:
python-version: 3.9 python-version: 3.11
- name: Install dependencies - name: Install dependencies
shell: bash shell: bash
run: | run: |
@ -227,10 +227,10 @@ jobs:
runs-on: ["self-hosted", "llm", "accuracy1", "accuracy-nightly"] runs-on: ["self-hosted", "llm", "accuracy1", "accuracy-nightly"]
steps: steps:
- uses: actions/checkout@f43a0e5ff2bd294095638e18286ca9a3d1956744 # actions/checkout@v3 - uses: actions/checkout@f43a0e5ff2bd294095638e18286ca9a3d1956744 # actions/checkout@v3
- name: Set up Python 3.9 - name: Set up Python 3.11
uses: actions/setup-python@v4 uses: actions/setup-python@v4
with: with:
python-version: 3.9 python-version: 3.11
- name: Install dependencies - name: Install dependencies
shell: bash shell: bash
run: | run: |

View file

@ -81,7 +81,7 @@ jobs:
strategy: strategy:
fail-fast: false fail-fast: false
matrix: matrix:
python-version: ["3.9"] python-version: ["3.11"]
model_name: ${{ fromJson(needs.set-matrix.outputs.model_name) }} model_name: ${{ fromJson(needs.set-matrix.outputs.model_name) }}
task: ${{ fromJson(needs.set-matrix.outputs.task) }} task: ${{ fromJson(needs.set-matrix.outputs.task) }}
precision: ${{ fromJson(needs.set-matrix.outputs.precision) }} precision: ${{ fromJson(needs.set-matrix.outputs.precision) }}
@ -158,10 +158,10 @@ jobs:
runs-on: ["self-hosted", "llm", "perf"] runs-on: ["self-hosted", "llm", "perf"]
steps: steps:
- uses: actions/checkout@f43a0e5ff2bd294095638e18286ca9a3d1956744 # actions/checkout@v3 - uses: actions/checkout@f43a0e5ff2bd294095638e18286ca9a3d1956744 # actions/checkout@v3
- name: Set up Python 3.9 - name: Set up Python 3.11
uses: actions/setup-python@v4 uses: actions/setup-python@v4
with: with:
python-version: 3.9 python-version: 3.11
- name: Set output path - name: Set output path
shell: bash shell: bash

View file

@ -39,7 +39,7 @@ jobs:
strategy: strategy:
fail-fast: false fail-fast: false
matrix: matrix:
python-version: ["3.9"] python-version: ["3.11"]
instruction: ["AVX512"] instruction: ["AVX512"]
runs-on: [ self-hosted, llm,"${{matrix.instruction}}", ubuntu-20.04-lts ] runs-on: [ self-hosted, llm,"${{matrix.instruction}}", ubuntu-20.04-lts ]
env: env:

View file

@ -33,7 +33,7 @@ jobs:
strategy: strategy:
fail-fast: false fail-fast: false
matrix: matrix:
python-version: ["3.9"] python-version: ["3.11"]
runs-on: [self-hosted, llm, perf] runs-on: [self-hosted, llm, perf]
env: env:
OMP_NUM_THREADS: 16 OMP_NUM_THREADS: 16
@ -163,7 +163,7 @@ jobs:
strategy: strategy:
fail-fast: false fail-fast: false
matrix: matrix:
python-version: ["3.9"] python-version: ["3.11"]
runs-on: [self-hosted, llm, spr-perf] runs-on: [self-hosted, llm, spr-perf]
env: env:
OMP_NUM_THREADS: 16 OMP_NUM_THREADS: 16
@ -238,10 +238,10 @@ jobs:
include: include:
- os: windows - os: windows
platform: dp platform: dp
python-version: "3.9" python-version: "3.11"
# - os: windows # - os: windows
# platform: lp # platform: lp
# python-version: "3.9" # python-version: "3.11"
runs-on: [self-hosted, "${{ matrix.os }}", llm, perf-core, "${{ matrix.platform }}"] runs-on: [self-hosted, "${{ matrix.os }}", llm, perf-core, "${{ matrix.platform }}"]
env: env:
ANALYTICS_ZOO_ROOT: ${{ github.workspace }} ANALYTICS_ZOO_ROOT: ${{ github.workspace }}
@ -309,7 +309,7 @@ jobs:
matrix: matrix:
include: include:
- os: windows - os: windows
python-version: "3.9" python-version: "3.11"
runs-on: [self-hosted, "${{ matrix.os }}", llm, perf-igpu] runs-on: [self-hosted, "${{ matrix.os }}", llm, perf-igpu]
env: env:
ANALYTICS_ZOO_ROOT: ${{ github.workspace }} ANALYTICS_ZOO_ROOT: ${{ github.workspace }}
@ -380,7 +380,7 @@ jobs:
- name: Create env for html generation - name: Create env for html generation
shell: cmd shell: cmd
run: | run: |
call conda create -n html-gen python=3.9 -y call conda create -n html-gen python=3.11 -y
call conda activate html-gen call conda activate html-gen
pip install pandas==1.5.3 pip install pandas==1.5.3

View file

@ -30,7 +30,7 @@ jobs:
strategy: strategy:
fail-fast: false fail-fast: false
matrix: matrix:
python-version: ["3.9"] python-version: ["3.11"]
runs-on: [self-hosted, llm, perf] runs-on: [self-hosted, llm, perf]
env: env:
OMP_NUM_THREADS: 16 OMP_NUM_THREADS: 16
@ -154,7 +154,7 @@ jobs:
strategy: strategy:
fail-fast: false fail-fast: false
matrix: matrix:
python-version: ["3.9"] python-version: ["3.11"]
runs-on: [self-hosted, llm, perf] runs-on: [self-hosted, llm, perf]
env: env:
OMP_NUM_THREADS: 16 OMP_NUM_THREADS: 16

View file

@ -29,7 +29,7 @@ jobs:
strategy: strategy:
fail-fast: false fail-fast: false
matrix: matrix:
python-version: ["3.9"] python-version: ["3.11"]
runs-on: [self-hosted, llm, spr01-perf] runs-on: [self-hosted, llm, spr01-perf]
env: env:
OMP_NUM_THREADS: 16 OMP_NUM_THREADS: 16
@ -87,7 +87,7 @@ jobs:
strategy: strategy:
fail-fast: false fail-fast: false
matrix: matrix:
python-version: ["3.9"] python-version: ["3.11"]
runs-on: [self-hosted, llm, spr01-perf] runs-on: [self-hosted, llm, spr01-perf]
env: env:
OMP_NUM_THREADS: 16 OMP_NUM_THREADS: 16

View file

@ -51,7 +51,7 @@ jobs:
if [ ${{ github.event_name }} == 'schedule' ]; then if [ ${{ github.event_name }} == 'schedule' ]; then
python_version='["3.9", "3.10", "3.11"]' python_version='["3.9", "3.10", "3.11"]'
else else
python_version='["3.9"]' python_version='["3.11"]'
fi fi
list=$(echo ${python_version} | jq -c) list=$(echo ${python_version} | jq -c)
echo "python-version=${list}" >> "$GITHUB_OUTPUT" echo "python-version=${list}" >> "$GITHUB_OUTPUT"
@ -224,6 +224,7 @@ jobs:
run: | run: |
pip install llama-index-readers-file llama-index-vector-stores-postgres llama-index-embeddings-huggingface pip install llama-index-readers-file llama-index-vector-stores-postgres llama-index-embeddings-huggingface
pip install transformers==4.31.0 pip install transformers==4.31.0
pip install "pydantic>=2.0.0"
bash python/llm/test/run-llm-llamaindex-tests.sh bash python/llm/test/run-llm-llamaindex-tests.sh
llm-unit-test-on-arc: llm-unit-test-on-arc:
needs: [setup-python-version, llm-cpp-build] needs: [setup-python-version, llm-cpp-build]
@ -398,4 +399,5 @@ jobs:
pip install --pre --upgrade ipex-llm[xpu_2.0] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/cn/ pip install --pre --upgrade ipex-llm[xpu_2.0] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/cn/
source /home/arda/intel/oneapi/setvars.sh source /home/arda/intel/oneapi/setvars.sh
fi fi
pip install "pydantic>=2.0.0"
bash python/llm/test/run-llm-llamaindex-tests-gpu.sh bash python/llm/test/run-llm-llamaindex-tests-gpu.sh

View file

@ -7,7 +7,7 @@
**`IPEX-LLM`** is a PyTorch library for running **LLM** on Intel CPU and GPU *(e.g., local PC with iGPU, discrete GPU such as Arc, Flex and Max)* with very low latency[^1]. **`IPEX-LLM`** is a PyTorch library for running **LLM** on Intel CPU and GPU *(e.g., local PC with iGPU, discrete GPU such as Arc, Flex and Max)* with very low latency[^1].
> [!NOTE] > [!NOTE]
> - *It is built on top of **Intel Extension for PyTorch** (**`IPEX`**), as well as the excellent work of **`llama.cpp`**, **`bitsandbytes`**, **`vLLM`**, **`qlora`**, **`AutoGPTQ`**, **`AutoAWQ`**, etc.* > - *It is built on top of **Intel Extension for PyTorch** (**`IPEX`**), as well as the excellent work of **`llama.cpp`**, **`bitsandbytes`**, **`vLLM`**, **`qlora`**, **`AutoGPTQ`**, **`AutoAWQ`**, etc.*
> - *It provides seamless integration with [llama.cpp](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/llama_cpp_quickstart.html), [Text-Generation-WebUI](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/webui_quickstart.html), [HuggingFace transformers](python/llm/example/GPU/HF-Transformers-AutoModels), [HuggingFace PEFT](python/llm/example/GPU/LLM-Finetuning), [LangChain](python/llm/example/GPU/LangChain), [LlamaIndex](python/llm/example/GPU/LlamaIndex), [DeepSpeed-AutoTP](python/llm/example/GPU/Deepspeed-AutoTP), [vLLM](python/llm/example/GPU/vLLM-Serving), [FastChat](python/llm/src/ipex_llm/serving/fastchat), [HuggingFace TRL](python/llm/example/GPU/LLM-Finetuning/DPO), [AutoGen](python/llm/example/CPU/Applications/autogen), [ModeScope](python/llm/example/GPU/ModelScope-Models), etc.* > - *It provides seamless integration with [llama.cpp](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/llama_cpp_quickstart.html), [ollama](https://ipex-llm.readthedocs.io/en/main/doc/LLM/Quickstart/ollama_quickstart.html), [Text-Generation-WebUI](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/webui_quickstart.html), [HuggingFace transformers](python/llm/example/GPU/HF-Transformers-AutoModels), [HuggingFace PEFT](python/llm/example/GPU/LLM-Finetuning), [LangChain](python/llm/example/GPU/LangChain), [LlamaIndex](python/llm/example/GPU/LlamaIndex), [DeepSpeed-AutoTP](python/llm/example/GPU/Deepspeed-AutoTP), [vLLM](python/llm/example/GPU/vLLM-Serving), [FastChat](python/llm/src/ipex_llm/serving/fastchat), [HuggingFace TRL](python/llm/example/GPU/LLM-Finetuning/DPO), [AutoGen](python/llm/example/CPU/Applications/autogen), [ModeScope](python/llm/example/GPU/ModelScope-Models), etc.*
> - ***50+ models** have been optimized/verified on `ipex-llm` (including LLaMA2, Mistral, Mixtral, Gemma, LLaVA, Whisper, ChatGLM, Baichuan, Qwen, RWKV, and more); see the complete list [here](#verified-models).* > - ***50+ models** have been optimized/verified on `ipex-llm` (including LLaMA2, Mistral, Mixtral, Gemma, LLaVA, Whisper, ChatGLM, Baichuan, Qwen, RWKV, and more); see the complete list [here](#verified-models).*
## `ipex-llm` Demo ## `ipex-llm` Demo
@ -48,9 +48,10 @@ See the demo of running [*Text-Generation-WebUI*](https://ipex-llm.readthedocs.i
</table> </table>
## Latest Update 🔥 ## Latest Update 🔥
- [2024/04] `ipex-llm` now provides C++ interface, which can be used as an accelerated backend for running [llama.cpp](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/llama_cpp_quickstart.html) and [ollama](https://ipex-llm.readthedocs.io/en/main/doc/LLM/Quickstart/ollama_quickstart.html) on Intel GPU.
- [2024/03] `bigdl-llm` has now become `ipex-llm` (see the migration guide [here](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/bigdl_llm_migration.html)); you may find the original `BigDL` project [here](https://github.com/intel-analytics/bigdl-2.x). - [2024/03] `bigdl-llm` has now become `ipex-llm` (see the migration guide [here](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/bigdl_llm_migration.html)); you may find the original `BigDL` project [here](https://github.com/intel-analytics/bigdl-2.x).
- [2024/02] `ipex-llm` now supports directly loading model from [ModelScope](python/llm/example/GPU/ModelScope-Models) ([魔搭](python/llm/example/CPU/ModelScope-Models)). - [2024/02] `ipex-llm` now supports directly loading model from [ModelScope](python/llm/example/GPU/ModelScope-Models) ([魔搭](python/llm/example/CPU/ModelScope-Models)).
- [2024/02] `ipex-llm` added inital **INT2** support (based on llama.cpp [IQ2](python/llm/example/GPU/HF-Transformers-AutoModels/Advanced-Quantizations/GGUF-IQ2) mechanism), which makes it possible to run large-size LLM (e.g., Mixtral-8x7B) on Intel GPU with 16GB VRAM. - [2024/02] `ipex-llm` added initial **INT2** support (based on llama.cpp [IQ2](python/llm/example/GPU/HF-Transformers-AutoModels/Advanced-Quantizations/GGUF-IQ2) mechanism), which makes it possible to run large-size LLM (e.g., Mixtral-8x7B) on Intel GPU with 16GB VRAM.
- [2024/02] Users can now use `ipex-llm` through [Text-Generation-WebUI](https://github.com/intel-analytics/text-generation-webui) GUI. - [2024/02] Users can now use `ipex-llm` through [Text-Generation-WebUI](https://github.com/intel-analytics/text-generation-webui) GUI.
- [2024/02] `ipex-llm` now supports *[Self-Speculative Decoding](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Inference/Self_Speculative_Decoding.html)*, which in practice brings **~30% speedup** for FP16 and BF16 inference latency on Intel [GPU](python/llm/example/GPU/Speculative-Decoding) and [CPU](python/llm/example/CPU/Speculative-Decoding) respectively. - [2024/02] `ipex-llm` now supports *[Self-Speculative Decoding](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Inference/Self_Speculative_Decoding.html)*, which in practice brings **~30% speedup** for FP16 and BF16 inference latency on Intel [GPU](python/llm/example/GPU/Speculative-Decoding) and [CPU](python/llm/example/CPU/Speculative-Decoding) respectively.
- [2024/02] `ipex-llm` now supports a comprehensive list of LLM **finetuning** on Intel GPU (including [LoRA](python/llm/example/GPU/LLM-Finetuning/LoRA), [QLoRA](python/llm/example/GPU/LLM-Finetuning/QLoRA), [DPO](python/llm/example/GPU/LLM-Finetuning/DPO), [QA-LoRA](python/llm/example/GPU/LLM-Finetuning/QA-LoRA) and [ReLoRA](python/llm/example/GPU/LLM-Finetuning/ReLora)). - [2024/02] `ipex-llm` now supports a comprehensive list of LLM **finetuning** on Intel GPU (including [LoRA](python/llm/example/GPU/LLM-Finetuning/LoRA), [QLoRA](python/llm/example/GPU/LLM-Finetuning/QLoRA), [DPO](python/llm/example/GPU/LLM-Finetuning/DPO), [QA-LoRA](python/llm/example/GPU/LLM-Finetuning/QA-LoRA) and [ReLoRA](python/llm/example/GPU/LLM-Finetuning/ReLora)).
@ -81,7 +82,8 @@ See the demo of running [*Text-Generation-WebUI*](https://ipex-llm.readthedocs.i
- *For more details, please refer to the [installation guide](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Overview/install.html)* - *For more details, please refer to the [installation guide](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Overview/install.html)*
### Run `ipex-llm` ### Run `ipex-llm`
- [llama.cpp](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/llama_cpp_quickstart.html): running **ipex-llm for llama.cpp** (*using C++ interface of `ipex-llm` as an accelerated backend for `llama.cpp` on Intel GPU*) - [llama.cpp](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/llama_cpp_quickstart.html): running **llama.cpp** (*using C++ interface of `ipex-llm` as an accelerated backend for `llama.cpp`*) on Intel GPU
- [ollama](https://ipex-llm.readthedocs.io/en/main/doc/LLM/Quickstart/ollama_quickstart.html): running **ollama** (*using C++ interface of `ipex-llm` as an accelerated backend for `ollama`*) on Intel GPU
- [vLLM](python/llm/example/GPU/vLLM-Serving): running `ipex-llm` in `vLLM` on both Intel [GPU](python/llm/example/GPU/vLLM-Serving) and [CPU](python/llm/example/CPU/vLLM-Serving) - [vLLM](python/llm/example/GPU/vLLM-Serving): running `ipex-llm` in `vLLM` on both Intel [GPU](python/llm/example/GPU/vLLM-Serving) and [CPU](python/llm/example/CPU/vLLM-Serving)
- [FastChat](python/llm/src/ipex_llm/serving/fastchat): running `ipex-llm` in `FastChat` serving on on both Intel GPU and CPU - [FastChat](python/llm/src/ipex_llm/serving/fastchat): running `ipex-llm` in `FastChat` serving on on both Intel GPU and CPU
- [LangChain-Chatchat RAG](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/chatchat_quickstart.html): running `ipex-llm` in `LangChain-Chatchat` (*Knowledge Base QA using **RAG** pipeline*) - [LangChain-Chatchat RAG](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/chatchat_quickstart.html): running `ipex-llm` in `LangChain-Chatchat` (*Knowledge Base QA using **RAG** pipeline*)

View file

@ -21,7 +21,7 @@ RUN echo "deb [signed-by=/usr/share/keyrings/intel-oneapi-archive-keyring.gpg] h
RUN mkdir /ipex_llm/data && mkdir /ipex_llm/model && \ RUN mkdir /ipex_llm/data && mkdir /ipex_llm/model && \
# install pytorch 2.0.1 # install pytorch 2.0.1
apt-get update && \ apt-get update && \
apt-get install -y python3-pip python3.9-dev python3-wheel git software-properties-common && \ apt-get install -y python3-pip python3.11-dev python3-wheel git software-properties-common && \
pip3 install --upgrade pip && \ pip3 install --upgrade pip && \
export PIP_DEFAULT_TIMEOUT=100 && \ export PIP_DEFAULT_TIMEOUT=100 && \
pip install --upgrade torch==2.1.0 --index-url https://download.pytorch.org/whl/cpu && \ pip install --upgrade torch==2.1.0 --index-url https://download.pytorch.org/whl/cpu && \
@ -37,9 +37,9 @@ RUN mkdir /ipex_llm/data && mkdir /ipex_llm/model && \
pip install -r /ipex_llm/requirements.txt && \ pip install -r /ipex_llm/requirements.txt && \
# install python # install python
add-apt-repository ppa:deadsnakes/ppa -y && \ add-apt-repository ppa:deadsnakes/ppa -y && \
apt-get install -y python3.9 && \ apt-get install -y python3.11 && \
rm /usr/bin/python3 && \ rm /usr/bin/python3 && \
ln -s /usr/bin/python3.9 /usr/bin/python3 && \ ln -s /usr/bin/python3.11 /usr/bin/python3 && \
ln -s /usr/bin/python3 /usr/bin/python && \ ln -s /usr/bin/python3 /usr/bin/python && \
pip install --no-cache requests argparse cryptography==3.3.2 urllib3 && \ pip install --no-cache requests argparse cryptography==3.3.2 urllib3 && \
pip install --upgrade requests && \ pip install --upgrade requests && \

View file

@ -21,7 +21,7 @@ RUN echo "deb [signed-by=/usr/share/keyrings/intel-oneapi-archive-keyring.gpg] h
RUN mkdir -p /ipex_llm/data && mkdir -p /ipex_llm/model && \ RUN mkdir -p /ipex_llm/data && mkdir -p /ipex_llm/model && \
# install pytorch 2.1.0 # install pytorch 2.1.0
apt-get update && \ apt-get update && \
apt-get install -y --no-install-recommends python3-pip python3.9-dev python3-wheel python3.9-distutils git software-properties-common && \ apt-get install -y --no-install-recommends python3-pip python3.11-dev python3-wheel python3.11-distutils git software-properties-common && \
apt-get clean && \ apt-get clean && \
rm -rf /var/lib/apt/lists/* && \ rm -rf /var/lib/apt/lists/* && \
pip3 install --upgrade pip && \ pip3 install --upgrade pip && \

View file

@ -22,7 +22,7 @@ RUN echo "deb [signed-by=/usr/share/keyrings/intel-oneapi-archive-keyring.gpg] h
RUN mkdir -p /ipex_llm/data && mkdir -p /ipex_llm/model && \ RUN mkdir -p /ipex_llm/data && mkdir -p /ipex_llm/model && \
apt-get update && \ apt-get update && \
apt install -y --no-install-recommends openssh-server openssh-client libcap2-bin gnupg2 ca-certificates \ apt install -y --no-install-recommends openssh-server openssh-client libcap2-bin gnupg2 ca-certificates \
python3-pip python3.9-dev python3-wheel python3.9-distutils git software-properties-common && \ python3-pip python3.11-dev python3-wheel python3.11-distutils git software-properties-common && \
apt-get clean && \ apt-get clean && \
rm -rf /var/lib/apt/lists/* && \ rm -rf /var/lib/apt/lists/* && \
mkdir -p /var/run/sshd && \ mkdir -p /var/run/sshd && \

View file

@ -18,15 +18,15 @@ RUN curl -fsSL https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-P
apt-get install -y curl wget git gnupg gpg-agent software-properties-common libunwind8-dev vim less && \ apt-get install -y curl wget git gnupg gpg-agent software-properties-common libunwind8-dev vim less && \
# install Intel GPU driver # install Intel GPU driver
apt-get install -y intel-opencl-icd intel-level-zero-gpu=1.3.26241.33-647~22.04 level-zero level-zero-dev --allow-downgrades && \ apt-get install -y intel-opencl-icd intel-level-zero-gpu=1.3.26241.33-647~22.04 level-zero level-zero-dev --allow-downgrades && \
# install python 3.9 # install python 3.11
ln -snf /usr/share/zoneinfo/$TZ /etc/localtime && echo $TZ > /etc/timezone && \ ln -snf /usr/share/zoneinfo/$TZ /etc/localtime && echo $TZ > /etc/timezone && \
env DEBIAN_FRONTEND=noninteractive apt-get update && \ env DEBIAN_FRONTEND=noninteractive apt-get update && \
add-apt-repository ppa:deadsnakes/ppa -y && \ add-apt-repository ppa:deadsnakes/ppa -y && \
apt-get install -y python3.9 && \ apt-get install -y python3.11 && \
rm /usr/bin/python3 && \ rm /usr/bin/python3 && \
ln -s /usr/bin/python3.9 /usr/bin/python3 && \ ln -s /usr/bin/python3.11 /usr/bin/python3 && \
ln -s /usr/bin/python3 /usr/bin/python && \ ln -s /usr/bin/python3 /usr/bin/python && \
apt-get install -y python3-pip python3.9-dev python3-wheel python3.9-distutils && \ apt-get install -y python3-pip python3.11-dev python3-wheel python3.11-distutils && \
curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py && \ curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py && \
# install XPU ipex-llm # install XPU ipex-llm
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ && \ pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ && \

View file

@ -9,22 +9,30 @@ ENV PYTHONUNBUFFERED=1
COPY ./start-notebook.sh /llm/start-notebook.sh COPY ./start-notebook.sh /llm/start-notebook.sh
# Install PYTHON 3.9 # Update the software sources
RUN env DEBIAN_FRONTEND=noninteractive apt-get update && \ RUN env DEBIAN_FRONTEND=noninteractive apt-get update && \
# Install essential packages
apt install software-properties-common libunwind8-dev vim less -y && \ apt install software-properties-common libunwind8-dev vim less -y && \
# Install git, curl, and wget
apt-get install -y git curl wget && \
# Install Python 3.11
# Add Python 3.11 PPA repository
add-apt-repository ppa:deadsnakes/ppa -y && \ add-apt-repository ppa:deadsnakes/ppa -y && \
apt-get install -y python3.9 git curl wget && \ # Install Python 3.11
apt-get install -y python3.11 && \
# Remove the original /usr/bin/python3 symbolic link
rm /usr/bin/python3 && \ rm /usr/bin/python3 && \
ln -s /usr/bin/python3.9 /usr/bin/python3 && \ # Create a symbolic link pointing to Python 3.11 at /usr/bin/python3
ln -s /usr/bin/python3.11 /usr/bin/python3 && \
# Create a symbolic link pointing to /usr/bin/python3 at /usr/bin/python
ln -s /usr/bin/python3 /usr/bin/python && \ ln -s /usr/bin/python3 /usr/bin/python && \
apt-get install -y python3-pip python3.9-dev python3-wheel python3.9-distutils && \ # Install Python 3.11 development and utility packages
apt-get install -y python3-pip python3.11-dev python3-wheel python3.11-distutils && \
# Download and install pip, install FastChat from source requires PEP 660 support
curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py && \ curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py && \
# Install FastChat from source requires PEP 660 support
python3 get-pip.py && \ python3 get-pip.py && \
rm get-pip.py && \ rm get-pip.py && \
pip install --upgrade requests argparse urllib3 && \ pip install --upgrade requests argparse urllib3 && \
pip3 install --no-cache-dir --upgrade torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu && \
pip install --pre --upgrade ipex-llm[all] && \
# Download ipex-llm-tutorial # Download ipex-llm-tutorial
cd /llm && \ cd /llm && \
pip install --upgrade jupyterlab && \ pip install --upgrade jupyterlab && \

View file

@ -20,16 +20,16 @@ RUN curl -fsSL https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-P
wget -qO - https://repositories.intel.com/graphics/intel-graphics.key | gpg --dearmor --output /usr/share/keyrings/intel-graphics.gpg && \ wget -qO - https://repositories.intel.com/graphics/intel-graphics.key | gpg --dearmor --output /usr/share/keyrings/intel-graphics.gpg && \
echo 'deb [arch=amd64,i386 signed-by=/usr/share/keyrings/intel-graphics.gpg] https://repositories.intel.com/graphics/ubuntu jammy arc' | tee /etc/apt/sources.list.d/intel.gpu.jammy.list && \ echo 'deb [arch=amd64,i386 signed-by=/usr/share/keyrings/intel-graphics.gpg] https://repositories.intel.com/graphics/ubuntu jammy arc' | tee /etc/apt/sources.list.d/intel.gpu.jammy.list && \
rm /etc/apt/sources.list.d/intel-graphics.list && \ rm /etc/apt/sources.list.d/intel-graphics.list && \
# Install PYTHON 3.9 and IPEX-LLM[xpu] # Install PYTHON 3.11 and IPEX-LLM[xpu]
ln -snf /usr/share/zoneinfo/$TZ /etc/localtime && echo $TZ > /etc/timezone && \ ln -snf /usr/share/zoneinfo/$TZ /etc/localtime && echo $TZ > /etc/timezone && \
env DEBIAN_FRONTEND=noninteractive apt-get update && \ env DEBIAN_FRONTEND=noninteractive apt-get update && \
apt install software-properties-common libunwind8-dev vim less -y && \ apt install software-properties-common libunwind8-dev vim less -y && \
add-apt-repository ppa:deadsnakes/ppa -y && \ add-apt-repository ppa:deadsnakes/ppa -y && \
apt-get install -y python3.9 git curl wget && \ apt-get install -y python3.11 git curl wget && \
rm /usr/bin/python3 && \ rm /usr/bin/python3 && \
ln -s /usr/bin/python3.9 /usr/bin/python3 && \ ln -s /usr/bin/python3.11 /usr/bin/python3 && \
ln -s /usr/bin/python3 /usr/bin/python && \ ln -s /usr/bin/python3 /usr/bin/python && \
apt-get install -y python3-pip python3.9-dev python3-wheel python3.9-distutils && \ apt-get install -y python3-pip python3.11-dev python3-wheel python3.11-distutils && \
curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py && \ curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py && \
# Install FastChat from source requires PEP 660 support # Install FastChat from source requires PEP 660 support
python3 get-pip.py && \ python3 get-pip.py && \

View file

@ -16,7 +16,7 @@ RUN cd /llm && \
# Fix Trivy CVE Issues # Fix Trivy CVE Issues
pip install Jinja2==3.1.3 transformers==4.36.2 gradio==4.19.2 cryptography==42.0.4 && \ pip install Jinja2==3.1.3 transformers==4.36.2 gradio==4.19.2 cryptography==42.0.4 && \
# Fix Qwen model adpater in fastchat # Fix Qwen model adpater in fastchat
patch /usr/local/lib/python3.9/dist-packages/fastchat/model/model_adapter.py < /llm/model_adapter.py.patch && \ patch /usr/local/lib/python3.11/dist-packages/fastchat/model/model_adapter.py < /llm/model_adapter.py.patch && \
chmod +x /opt/entrypoint.sh && \ chmod +x /opt/entrypoint.sh && \
chmod +x /sbin/tini && \ chmod +x /sbin/tini && \
cp /sbin/tini /usr/bin/tini cp /sbin/tini /usr/bin/tini

View file

@ -29,13 +29,16 @@
<a href="doc/LLM/Quickstart/docker_windows_gpu.html">Install IPEX-LLM in Docker on Windows with Intel GPU</a> <a href="doc/LLM/Quickstart/docker_windows_gpu.html">Install IPEX-LLM in Docker on Windows with Intel GPU</a>
</li> </li>
<li> <li>
<a href="doc/LLM/Quickstart/chatchat_quickstart.html">Run Langchain-Chatchat (RAG Application) on Intel GPU</a> <a href="doc/LLM/Quickstart/chatchat_quickstart.html">Run Local RAG using Langchain-Chatchat on Intel GPU</a>
</li> </li>
<li> <li>
<a href="doc/LLM/Quickstart/webui_quickstart.html">Run Text Generation WebUI on Intel GPU</a> <a href="doc/LLM/Quickstart/webui_quickstart.html">Run Text Generation WebUI on Intel GPU</a>
</li> </li>
<li> <li>
<a href="doc/LLM/Quickstart/continue_quickstart.html">Run Code Copilot (Continue) in VSCode with Intel GPU</a> <a href="doc/LLM/Quickstart/continue_quickstart.html">Run Coding Copilot (Continue) in VSCode with Intel GPU</a>
</li>
<li>
<a href="doc/LLM/Quickstart/open_webui_with_ollama_quickstart.html">Run Open WebUI with IPEX-LLM on Intel GPU</a>
</li> </li>
<li> <li>
<a href="doc/LLM/Quickstart/benchmark_quickstart.html">Run Performance Benchmarking with IPEX-LLM</a> <a href="doc/LLM/Quickstart/benchmark_quickstart.html">Run Performance Benchmarking with IPEX-LLM</a>

View file

@ -25,6 +25,7 @@ subtrees:
- file: doc/LLM/Quickstart/docker_windows_gpu - file: doc/LLM/Quickstart/docker_windows_gpu
- file: doc/LLM/Quickstart/chatchat_quickstart - file: doc/LLM/Quickstart/chatchat_quickstart
- file: doc/LLM/Quickstart/webui_quickstart - file: doc/LLM/Quickstart/webui_quickstart
- file: doc/LLM/Quickstart/open_webui_with_ollama_quickstart
- file: doc/LLM/Quickstart/continue_quickstart - file: doc/LLM/Quickstart/continue_quickstart
- file: doc/LLM/Quickstart/benchmark_quickstart - file: doc/LLM/Quickstart/benchmark_quickstart
- file: doc/LLM/Quickstart/llama_cpp_quickstart - file: doc/LLM/Quickstart/llama_cpp_quickstart

View file

@ -17,7 +17,7 @@ Please refer to [Environment Setup](#environment-setup) for more information.
.. important:: .. important::
``ipex-llm`` is tested with Python 3.9, 3.10 and 3.11; Python 3.9 is recommended for best practices. ``ipex-llm`` is tested with Python 3.9, 3.10 and 3.11; Python 3.11 is recommended for best practices.
``` ```
## Recommended Requirements ## Recommended Requirements
@ -39,10 +39,10 @@ Here list the recommended hardware and OS for smooth IPEX-LLM optimization exper
For optimal performance with LLM models using IPEX-LLM optimizations on Intel CPUs, here are some best practices for setting up environment: For optimal performance with LLM models using IPEX-LLM optimizations on Intel CPUs, here are some best practices for setting up environment:
First we recommend using [Conda](https://docs.conda.io/en/latest/miniconda.html) to create a python 3.9 enviroment: First we recommend using [Conda](https://docs.conda.io/en/latest/miniconda.html) to create a python 3.11 enviroment:
```bash ```bash
conda create -n llm python=3.9 conda create -n llm python=3.11
conda activate llm conda activate llm
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option

View file

@ -22,10 +22,10 @@ To apply Intel GPU acceleration, there're several prerequisite steps for tools i
* Step 4: Install Intel® oneAPI Base Toolkit 2024.0: * Step 4: Install Intel® oneAPI Base Toolkit 2024.0:
First, Create a Python 3.9 enviroment and activate it. In Anaconda Prompt: First, Create a Python 3.11 enviroment and activate it. In Anaconda Prompt:
```cmd ```cmd
conda create -n llm python=3.9 libuv conda create -n llm python=3.11 libuv
conda activate llm conda activate llm
``` ```
@ -33,7 +33,7 @@ To apply Intel GPU acceleration, there're several prerequisite steps for tools i
```eval_rst ```eval_rst
.. important:: .. important::
``ipex-llm`` is tested with Python 3.9, 3.10 and 3.11. Python 3.9 is recommended for best practices. ``ipex-llm`` is tested with Python 3.9, 3.10 and 3.11. Python 3.11 is recommended for best practices.
``` ```
Then, use `pip` to install the Intel oneAPI Base Toolkit 2024.0: Then, use `pip` to install the Intel oneAPI Base Toolkit 2024.0:
@ -93,17 +93,17 @@ If you encounter network issues when installing IPEX, you can also install IPEX-
Download the wheels on Windows system: Download the wheels on Windows system:
``` ```
wget https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/xpu/torch-2.1.0a0%2Bcxx11.abi-cp39-cp39-win_amd64.whl wget https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/xpu/torch-2.1.0a0%2Bcxx11.abi-cp311-cp311-win_amd64.whl
wget https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/xpu/torchvision-0.16.0a0%2Bcxx11.abi-cp39-cp39-win_amd64.whl wget https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/xpu/torchvision-0.16.0a0%2Bcxx11.abi-cp311-cp311-win_amd64.whl
wget https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/xpu/intel_extension_for_pytorch-2.1.10%2Bxpu-cp39-cp39-win_amd64.whl wget https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/xpu/intel_extension_for_pytorch-2.1.10%2Bxpu-cp311-cp311-win_amd64.whl
``` ```
You may install dependencies directly from the wheel archives and then install `ipex-llm` using following commands: You may install dependencies directly from the wheel archives and then install `ipex-llm` using following commands:
``` ```
pip install torch-2.1.0a0+cxx11.abi-cp39-cp39-win_amd64.whl pip install torch-2.1.0a0+cxx11.abi-cp311-cp311-win_amd64.whl
pip install torchvision-0.16.0a0+cxx11.abi-cp39-cp39-win_amd64.whl pip install torchvision-0.16.0a0+cxx11.abi-cp311-cp311-win_amd64.whl
pip install intel_extension_for_pytorch-2.1.10+xpu-cp39-cp39-win_amd64.whl pip install intel_extension_for_pytorch-2.1.10+xpu-cp311-cp311-win_amd64.whl
pip install --pre --upgrade ipex-llm[xpu] pip install --pre --upgrade ipex-llm[xpu]
``` ```
@ -111,7 +111,7 @@ pip install --pre --upgrade ipex-llm[xpu]
```eval_rst ```eval_rst
.. note:: .. note::
All the wheel packages mentioned here are for Python 3.9. If you would like to use Python 3.10 or 3.11, you should modify the wheel names for ``torch``, ``torchvision``, and ``intel_extension_for_pytorch`` by replacing ``cp39`` with ``cp310`` or ``cp311``, respectively. All the wheel packages mentioned here are for Python 3.11. If you would like to use Python 3.9 or 3.10, you should modify the wheel names for ``torch``, ``torchvision``, and ``intel_extension_for_pytorch`` by replacing ``cp11`` with ``cp39`` or ``cp310``, respectively.
``` ```
### Runtime Configuration ### Runtime Configuration
@ -164,7 +164,7 @@ If you met error when importing `intel_extension_for_pytorch`, please ensure tha
* Ensure that `libuv` is installed in your conda environment. This can be done during the creation of the environment with the command: * Ensure that `libuv` is installed in your conda environment. This can be done during the creation of the environment with the command:
```cmd ```cmd
conda create -n llm python=3.9 libuv conda create -n llm python=3.11 libuv
``` ```
If you missed `libuv`, you can add it to your existing environment through If you missed `libuv`, you can add it to your existing environment through
```cmd ```cmd
@ -399,12 +399,12 @@ IPEX-LLM GPU support on Linux has been verified on:
### Install IPEX-LLM ### Install IPEX-LLM
#### Install IPEX-LLM From PyPI #### Install IPEX-LLM From PyPI
We recommend using [miniconda](https://docs.conda.io/en/latest/miniconda.html) to create a python 3.9 enviroment: We recommend using [miniconda](https://docs.conda.io/en/latest/miniconda.html) to create a python 3.11 enviroment:
```eval_rst ```eval_rst
.. important:: .. important::
``ipex-llm`` is tested with Python 3.9, 3.10 and 3.11. Python 3.9 is recommended for best practices. ``ipex-llm`` is tested with Python 3.9, 3.10 and 3.11. Python 3.11 is recommended for best practices.
``` ```
```eval_rst ```eval_rst
@ -422,7 +422,7 @@ We recommend using [miniconda](https://docs.conda.io/en/latest/miniconda.html) t
.. code-block:: bash .. code-block:: bash
conda create -n llm python=3.9 conda create -n llm python=3.11
conda activate llm conda activate llm
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
@ -439,7 +439,7 @@ We recommend using [miniconda](https://docs.conda.io/en/latest/miniconda.html) t
.. code-block:: bash .. code-block:: bash
conda create -n llm python=3.9 conda create -n llm python=3.11
conda activate llm conda activate llm
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/cn/ pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/cn/
@ -461,7 +461,7 @@ We recommend using [miniconda](https://docs.conda.io/en/latest/miniconda.html) t
.. code-block:: bash .. code-block:: bash
conda create -n llm python=3.9 conda create -n llm python=3.11
conda activate llm conda activate llm
pip install --pre --upgrade ipex-llm[xpu_2.0] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ pip install --pre --upgrade ipex-llm[xpu_2.0] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
@ -470,7 +470,7 @@ We recommend using [miniconda](https://docs.conda.io/en/latest/miniconda.html) t
.. code-block:: bash .. code-block:: bash
conda create -n llm python=3.9 conda create -n llm python=3.11
conda activate llm conda activate llm
pip install --pre --upgrade ipex-llm[xpu_2.0] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/cn/ pip install --pre --upgrade ipex-llm[xpu_2.0] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/cn/
@ -488,18 +488,18 @@ If you encounter network issues when installing IPEX, you can also install IPEX-
.. code-block:: bash .. code-block:: bash
# get the wheels on Linux system for IPEX 2.1.10+xpu # get the wheels on Linux system for IPEX 2.1.10+xpu
wget https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/xpu/torch-2.1.0a0%2Bcxx11.abi-cp39-cp39-linux_x86_64.whl wget https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/xpu/torch-2.1.0a0%2Bcxx11.abi-cp311-cp311-linux_x86_64.whl
wget https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/xpu/torchvision-0.16.0a0%2Bcxx11.abi-cp39-cp39-linux_x86_64.whl wget https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/xpu/torchvision-0.16.0a0%2Bcxx11.abi-cp311-cp311-linux_x86_64.whl
wget https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/xpu/intel_extension_for_pytorch-2.1.10%2Bxpu-cp39-cp39-linux_x86_64.whl wget https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/xpu/intel_extension_for_pytorch-2.1.10%2Bxpu-cp311-cp311-linux_x86_64.whl
Then you may install directly from the wheel archives using following commands: Then you may install directly from the wheel archives using following commands:
.. code-block:: bash .. code-block:: bash
# install the packages from the wheels # install the packages from the wheels
pip install torch-2.1.0a0+cxx11.abi-cp39-cp39-linux_x86_64.whl pip install torch-2.1.0a0+cxx11.abi-cp311-cp311-linux_x86_64.whl
pip install torchvision-0.16.0a0+cxx11.abi-cp39-cp39-linux_x86_64.whl pip install torchvision-0.16.0a0+cxx11.abi-cp311-cp311-linux_x86_64.whl
pip install intel_extension_for_pytorch-2.1.10+xpu-cp39-cp39-linux_x86_64.whl pip install intel_extension_for_pytorch-2.1.10+xpu-cp311-cp311-linux_x86_64.whl
# install ipex-llm for Intel GPU # install ipex-llm for Intel GPU
pip install --pre --upgrade ipex-llm[xpu] pip install --pre --upgrade ipex-llm[xpu]
@ -509,18 +509,18 @@ If you encounter network issues when installing IPEX, you can also install IPEX-
.. code-block:: bash .. code-block:: bash
# get the wheels on Linux system for IPEX 2.0.110+xpu # get the wheels on Linux system for IPEX 2.0.110+xpu
wget https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/xpu/torch-2.0.1a0%2Bcxx11.abi-cp39-cp39-linux_x86_64.whl wget https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/xpu/torch-2.0.1a0%2Bcxx11.abi-cp311-cp311-linux_x86_64.whl
wget https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/xpu/torchvision-0.15.2a0%2Bcxx11.abi-cp39-cp39-linux_x86_64.whl wget https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/xpu/torchvision-0.15.2a0%2Bcxx11.abi-cp311-cp311-linux_x86_64.whl
wget https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/xpu/intel_extension_for_pytorch-2.0.110%2Bxpu-cp39-cp39-linux_x86_64.whl wget https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/xpu/intel_extension_for_pytorch-2.0.110%2Bxpu-cp311-cp311-linux_x86_64.whl
Then you may install directly from the wheel archives using following commands: Then you may install directly from the wheel archives using following commands:
.. code-block:: bash .. code-block:: bash
# install the packages from the wheels # install the packages from the wheels
pip install torch-2.0.1a0+cxx11.abi-cp39-cp39-linux_x86_64.whl pip install torch-2.0.1a0+cxx11.abi-cp311-cp311-linux_x86_64.whl
pip install torchvision-0.15.2a0+cxx11.abi-cp39-cp39-linux_x86_64.whl pip install torchvision-0.15.2a0+cxx11.abi-cp311-cp311-linux_x86_64.whl
pip install intel_extension_for_pytorch-2.0.110+xpu-cp39-cp39-linux_x86_64.whl pip install intel_extension_for_pytorch-2.0.110+xpu-cp311-cp311-linux_x86_64.whl
# install ipex-llm for Intel GPU # install ipex-llm for Intel GPU
pip install --pre --upgrade ipex-llm[xpu_2.0] pip install --pre --upgrade ipex-llm[xpu_2.0]
@ -530,7 +530,7 @@ If you encounter network issues when installing IPEX, you can also install IPEX-
```eval_rst ```eval_rst
.. note:: .. note::
All the wheel packages mentioned here are for Python 3.9. If you would like to use Python 3.10 or 3.11, you should modify the wheel names for ``torch``, ``torchvision``, and ``intel_extension_for_pytorch`` by replacing ``cp39`` with ``cp310`` or ``cp311``, respectively. All the wheel packages mentioned here are for Python 3.11. If you would like to use Python 3.9 or 3.10, you should modify the wheel names for ``torch``, ``torchvision``, and ``intel_extension_for_pytorch`` by replacing ``cp11`` with ``cp39`` or ``cp310``, respectively.
``` ```
### Runtime Configuration ### Runtime Configuration

View file

@ -6,8 +6,8 @@
<table border="1" width="100%"> <table border="1" width="100%">
<tr> <tr>
<td align="center">English</td> <td align="center" width="50%">English</td>
<td align="center">简体中文</td> <td align="center" width="50%">简体中文</td>
</tr> </tr>
<tr> <tr>
<td><video src="https://llm-assets.readthedocs.io/en/latest/_images/langchain-chatchat-en.mp4" width="100%" controls></video></td> <td><video src="https://llm-assets.readthedocs.io/en/latest/_images/langchain-chatchat-en.mp4" width="100%" controls></video></td>
@ -33,7 +33,7 @@ See the Langchain-Chatchat architecture below ([source](https://github.com/chatc
Follow the guide that corresponds to your specific system and GPU type from the links provided below: Follow the guide that corresponds to your specific system and GPU type from the links provided below:
- For systems with Intel Core Ultra integrated GPU: [Windows Guide](https://github.com/intel-analytics/Langchain-Chatchat/blob/ipex-llm/INSTALL_win_mtl.md#) - For systems with Intel Core Ultra integrated GPU: [Windows Guide](https://github.com/intel-analytics/Langchain-Chatchat/blob/ipex-llm/INSTALL_win_mtl.md#)
- For systems with Intel Arc A-Series GPU: [Windows Guide](https://github.com/intel-analytics/Langchain-Chatchat/blob/ipex-llm/INSTALL_windows_arc.md#) | [Linux Guide](https://github.com/intel-analytics/Langchain-Chatchat/blob/ipex-llm/INSTALL_linux_arc.md#) - For systems with Intel Arc A-Series GPU: [Windows Guide](https://github.com/intel-analytics/Langchain-Chatchat/blob/ipex-llm/INSTALL_win_arc.md#) | [Linux Guide](https://github.com/intel-analytics/Langchain-Chatchat/blob/ipex-llm/INSTALL_linux_arc.md#)
- For systems with Intel Data Center Max Series GPU: [Linux Guide](https://github.com/intel-analytics/Langchain-Chatchat/blob/ipex-llm/INSTALL_linux_max.md#) - For systems with Intel Data Center Max Series GPU: [Linux Guide](https://github.com/intel-analytics/Langchain-Chatchat/blob/ipex-llm/INSTALL_linux_max.md#)

View file

@ -1,8 +1,9 @@
# Run Code Copilot on Windows with Intel GPU # Run Coding Copilot on Windows with Intel GPU
[**Continue**](https://marketplace.visualstudio.com/items?itemName=Continue.continue) is a coding copilot extension in [Microsoft Visual Studio Code](https://code.visualstudio.com/); by porting it to [`ipex-llm`](https://github.com/intel-analytics/ipex-llm), users can now easily leverage local llms running on Intel GPU (e.g., local PC with iGPU, discrete GPU such as Arc, Flex and Max) for code explanation, code generation/completion; see the demos of using Continue with [Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) running on Intel A770 GPU below. [**Continue**](https://marketplace.visualstudio.com/items?itemName=Continue.continue) is a coding copilot extension in [Microsoft Visual Studio Code](https://code.visualstudio.com/); by porting it to [`ipex-llm`](https://github.com/intel-analytics/ipex-llm), users can now easily leverage local LLMs running on Intel GPU (e.g., local PC with iGPU, discrete GPU such as Arc, Flex and Max) for code explanation, code generation/completion, etc.
See the demos of using Continue with [Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) running on Intel A770 GPU below.
<table border="1" width="100%"> <table border="1" width="100%">
<tr> <tr>
@ -27,7 +28,7 @@ This guide walks you through setting up and running **Continue** within _Visual
Visit [Run Text Generation WebUI Quickstart Guide](webui_quickstart.html), and follow the steps 1) [Install IPEX-LLM](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/webui_quickstart.html#install-ipex-llm), 2) [Install WebUI](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/webui_quickstart.html#install-the-webui) and 3) [Start the Server](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/webui_quickstart.html#start-the-webui-server) to install and start the Text Generation WebUI API Service. **Please pay attention to below items during installation:** Visit [Run Text Generation WebUI Quickstart Guide](webui_quickstart.html), and follow the steps 1) [Install IPEX-LLM](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/webui_quickstart.html#install-ipex-llm), 2) [Install WebUI](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/webui_quickstart.html#install-the-webui) and 3) [Start the Server](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/webui_quickstart.html#start-the-webui-server) to install and start the Text Generation WebUI API Service. **Please pay attention to below items during installation:**
- The Text Generation WebUI API service requires Python version 3.10 or higher. But [IPEX-LLM installation instructions](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/webui_quickstart.html#install-ipex-llm) used ``python=3.9`` as default for creating the conda environment. We recommend changing it to ``3.11``, using below command: - The Text Generation WebUI API service requires Python version 3.10 or higher. We recommend use Python 3.11 as below:
```bash ```bash
conda create -n llm python=3.11 libuv conda create -n llm python=3.11 libuv
``` ```

View file

@ -13,9 +13,10 @@ This section includes efficient guide to show you how to:
* `Install IPEX-LLM on Windows with Intel GPU <./install_windows_gpu.html>`_ * `Install IPEX-LLM on Windows with Intel GPU <./install_windows_gpu.html>`_
* `Install IPEX-LLM in Docker on Windows with Intel GPU <./docker_windows_gpu.html>`_ * `Install IPEX-LLM in Docker on Windows with Intel GPU <./docker_windows_gpu.html>`_
* `Run Performance Benchmarking with IPEX-LLM <./benchmark_quickstart.html>`_ * `Run Performance Benchmarking with IPEX-LLM <./benchmark_quickstart.html>`_
* `Run Langchain-Chatchat (RAG Application) on Intel GPU <./chatchat_quickstart.html>`_ * `Run Local RAG using Langchain-Chatchat on Intel GPU <./chatchat_quickstart.html>`_
* `Run Text Generation WebUI on Intel GPU <./webui_quickstart.html>`_ * `Run Text Generation WebUI on Intel GPU <./webui_quickstart.html>`_
* `Run Code Copilot (Continue) in VSCode with Intel GPU <./continue_quickstart.html>`_ * `Run Open WebUI on Intel GPU <./open_webui_with_ollama_quickstart.html>`_
* `Run Coding Copilot (Continue) in VSCode with Intel GPU <./continue_quickstart.html>`_
* `Run llama.cpp with IPEX-LLM on Intel GPU <./llama_cpp_quickstart.html>`_ * `Run llama.cpp with IPEX-LLM on Intel GPU <./llama_cpp_quickstart.html>`_
* `Run Ollama with IPEX-LLM on Intel GPU <./ollama_quickstart.html>`_ * `Run Ollama with IPEX-LLM on Intel GPU <./ollama_quickstart.html>`_

View file

@ -144,7 +144,7 @@ You can use `conda --version` to verify you conda installation.
After installation, create a new python environment `llm`: After installation, create a new python environment `llm`:
```cmd ```cmd
conda create -n llm python=3.9 conda create -n llm python=3.11
``` ```
Activate the newly created environment `llm`: Activate the newly created environment `llm`:
```cmd ```cmd

View file

@ -57,7 +57,7 @@ Visit [Miniconda installation page](https://docs.anaconda.com/free/miniconda/),
Open the **Anaconda Prompt**. Then create a new python environment `llm` and activate it: Open the **Anaconda Prompt**. Then create a new python environment `llm` and activate it:
```cmd ```cmd
conda create -n llm python=3.9 libuv conda create -n llm python=3.11 libuv
conda activate llm conda activate llm
``` ```

View file

@ -1,6 +1,6 @@
# Run llama.cpp with IPEX-LLM on Intel GPU # Run llama.cpp with IPEX-LLM on Intel GPU
[ggerganov/llama.cpp](https://github.com/ggerganov/llama.cpp) prvoides fast LLM inference in in pure C++ across a variety of hardware; you can now use the C++ interface of `ipex-llm` as an accelerated backend for `llama.cpp` running on Intel **GPU** *(e.g., local PC with iGPU, discrete GPU such as Arc, Flex and Max)*. [ggerganov/llama.cpp](https://github.com/ggerganov/llama.cpp) prvoides fast LLM inference in in pure C++ across a variety of hardware; you can now use the C++ interface of [`ipex-llm`](https://github.com/intel-analytics/ipex-llm) as an accelerated backend for `llama.cpp` running on Intel **GPU** *(e.g., local PC with iGPU, discrete GPU such as Arc, Flex and Max)*.
See the demo of running LLaMA2-7B on Intel Arc GPU below. See the demo of running LLaMA2-7B on Intel Arc GPU below.
@ -26,7 +26,7 @@ Visit the [Install IPEX-LLM on Windows with Intel GPU Guide](https://ipex-llm.re
To use `llama.cpp` with IPEX-LLM, first ensure that `ipex-llm[cpp]` is installed. To use `llama.cpp` with IPEX-LLM, first ensure that `ipex-llm[cpp]` is installed.
```cmd ```cmd
conda create -n llm-cpp python=3.9 conda create -n llm-cpp python=3.11
conda activate llm-cpp conda activate llm-cpp
pip install --pre --upgrade ipex-llm[cpp] pip install --pre --upgrade ipex-llm[cpp]
``` ```

View file

@ -1,10 +1,16 @@
# Run Ollama on Linux with Intel GPU # Run Ollama on Linux with Intel GPU
The [ollama/ollama](https://github.com/ollama/ollama) is popular framework designed to build and run language models on a local machine. Now you can run Ollama with [`ipex-llm`](https://github.com/intel-analytics/ipex-llm) on Intel GPU (e.g., local PC with iGPU, discrete GPU such as Arc, Flex and Max); see the demo of running LLaMA2-7B on an Intel A770 GPU below. [ollama/ollama](https://github.com/ollama/ollama) is popular framework designed to build and run language models on a local machine; you can now use the C++ interface of [`ipex-llm`](https://github.com/intel-analytics/ipex-llm) as an accelerated backend for `ollama` running on Intel **GPU** *(e.g., local PC with iGPU, discrete GPU such as Arc, Flex and Max)*.
```eval_rst
.. note::
Only Linux is currently supported.
```
See the demo of running LLaMA2-7B on Intel Arc GPU below.
<video src="https://llm-assets.readthedocs.io/en/latest/_images/ollama-linux-arc.mp4" width="100%" controls></video> <video src="https://llm-assets.readthedocs.io/en/latest/_images/ollama-linux-arc.mp4" width="100%" controls></video>
## Quickstart ## Quickstart
### 1 Install IPEX-LLM with Ollama Binaries ### 1 Install IPEX-LLM with Ollama Binaries
@ -45,16 +51,16 @@ source /opt/intel/oneapi/setvars.sh
The console will display messages similar to the following: The console will display messages similar to the following:
<a href="https://llm-assets.readthedocs.io/en/latest/_images/webui_quickstart_chat.png" target="_blank"> <a href="https://llm-assets.readthedocs.io/en/latest/_images/ollama_serve.png" target="_blank">
<img src="https://llm-assets.readthedocs.io/en/latest/_images/ollama_serve.png" width=100%; /> <img src="https://llm-assets.readthedocs.io/en/latest/_images/ollama_serve.png" width=100%; />
</a> </a>
### 4 Pull Model ### 4 Pull Model
Keep the Ollama service on and open a new terminal and pull a model, e.g. `dolphin-phi:latest`: Keep the Ollama service on and open another terminal and run `./ollama pull <model_name>` to automatically pull a model. e.g. `dolphin-phi:latest`:
<a href="https://llm-assets.readthedocs.io/en/latest/_images/webui_quickstart_chat.png" target="_blank"> <a href="https://llm-assets.readthedocs.io/en/latest/_images/ollama_pull.png" target="_blank">
<img src="https://llm-assets.readthedocs.io/en/latest/_images/ollama_pull.png" width=100%; /> <img src="https://llm-assets.readthedocs.io/en/latest/_images/ollama_pull.png" width=100%; />
</a> </a>
@ -77,7 +83,7 @@ curl http://localhost:11434/api/generate -d '
An example output of using model `doplphin-phi` looks like the following: An example output of using model `doplphin-phi` looks like the following:
<a href="https://llm-assets.readthedocs.io/en/latest/_images/webui_quickstart_chat.png" target="_blank"> <a href="https://llm-assets.readthedocs.io/en/latest/_images/ollama_curl.png" target="_blank">
<img src="https://llm-assets.readthedocs.io/en/latest/_images/ollama_curl.png" width=100%; /> <img src="https://llm-assets.readthedocs.io/en/latest/_images/ollama_curl.png" width=100%; />
</a> </a>
@ -99,6 +105,6 @@ source /opt/intel/oneapi/setvars.sh
An example process of interacting with model with `ollama run` looks like the following: An example process of interacting with model with `ollama run` looks like the following:
<a href="https://llm-assets.readthedocs.io/en/latest/_images/webui_quickstart_chat.png" target="_blank"> <a href="https://llm-assets.readthedocs.io/en/latest/_images/ollama_run_1.png" target="_blank">
<img src="https://llm-assets.readthedocs.io/en/latest/_images/ollama_run_1.png" width=100%; /><img src="https://llm-assets.readthedocs.io/en/latest/_images/ollama_run_2.png" width=100%; /> <img src="https://llm-assets.readthedocs.io/en/latest/_images/ollama_run_1.png" width=100%; /><img src="https://llm-assets.readthedocs.io/en/latest/_images/ollama_run_2.png" width=100%; />
</a> </a>

View file

@ -0,0 +1,151 @@
# Run Open WebUI on Linux with Intel GPU
[Open WebUI](https://github.com/open-webui/open-webui) is a user friendly GUI for running LLM locally; by porting it to [`ipex-llm`](https://github.com/intel-analytics/ipex-llm), users can now easily run LLM in [Open WebUI](https://github.com/open-webui/open-webui) on Intel **GPU** *(e.g., local PC with iGPU, discrete GPU such as Arc, Flex and Max)*.
See the demo of running Mistral:7B on Intel Arc A770 below.
<video src="https://llm-assets.readthedocs.io/en/latest/_images/open_webui_demo.mp4" width="100%" controls></video>
## Quickstart
This quickstart guide walks you through setting up and using [Open WebUI](https://github.com/open-webui/open-webui) with Ollama (using the C++ interface of [`ipex-llm`](https://github.com/intel-analytics/ipex-llm) as an accelerated backend).
### 1 Run Ollama on Linux with Intel GPU
Follow the instructions on the [Run Ollama on Linux with Intel GPU](ollama_quickstart.html) to install and run "Ollam Serve". Please ensure that the Ollama server continues to run while you're using the Open WebUI.
### 2 Install and Run Open-Webui
#### Installation
```eval_rst
.. note::
Package version requirements for running Open WebUI: Node.js (>= 20.10) or Bun (>= 1.0.21), Python (>= 3.11)
```
1. Run below commands to install Node.js & npm. Once the installation is complete, verify the installation by running ```node -v``` and ```npm -v``` to check the versions of Node.js and npm, respectively.
```sh
sudo apt update
sudo apt install nodejs
sudo apt install npm
```
2. Use `git` to clone the [open-webui repo](https://github.com/open-webui/open-webui.git), or download the open-webui source code zip from [this link](https://github.com/open-webui/open-webui/archive/refs/heads/main.zip) and unzip it to a directory, e.g. `~/open-webui`.
3. Run below commands to install Open WebUI.
```sh
cd ~/open-webui/
cp -RPp .env.example .env # Copy required .env file
# Build frontend
npm i
npm run build
# Install Dependencies
cd ./backend
pip install -r requirements.txt -U
```
#### Start the service
Run below commands to start the service:
```sh
export no_proxy=localhost,127.0.0.1
bash start.sh
```
```eval_rst
.. note::
If you have difficulty accessing the huggingface repositories, you may use a mirror, e.g. add `export HF_ENDPOINT=https://hf-mirror.com` before running `bash start.sh`.
```
#### Access the WebUI
Upon successful launch, URLs to access the WebUI will be displayed in the terminal. Open the provided local URL in your browser to interact with the WebUI, e.g. http://localhost:8080/.
### 3. Using Open-Webui
```eval_rst
.. note::
For detailed information about how to use Open WebUI, visit the README of `open-webui official repository <https://github.com/open-webui/open-webui>`_.
```
#### Log-in
If this is your first time using it, you need to register. After registering, log in with the registered account to access the interface.
<a href="https://llm-assets.readthedocs.io/en/latest/_images/open_webui_signup.png" target="_blank">
<img src="https://llm-assets.readthedocs.io/en/latest/_images/open_webui_signup.png" width="100%" />
</a>
<a href="https://llm-assets.readthedocs.io/en/latest/_images/open_webui_login.png" target="_blank">
<img src="https://llm-assets.readthedocs.io/en/latest/_images/open_webui_login.png" width="100%" />
</a>
#### Configure `Ollama` service URL
Access the Ollama settings through **Settings -> Connections** in the menu. By default, the **Ollama Base URL** is preset to https://localhost:11434, as illustrated in the snapshot below. To verify the status of the Ollama service connection, click the **Refresh button** located next to the textbox. If the WebUI is unable to establish a connection with the Ollama server, you will see an error message stating, `WebUI could not connect to Ollama`.
<a href="https://llm-assets.readthedocs.io/en/latest/_images/open_webui_settings_0.png" target="_blank">
<img src="https://llm-assets.readthedocs.io/en/latest/_images/open_webui_settings_0.png" width="100%" />
</a>
If the connection is successful, you will see a message stating `Service Connection Verified`, as illustrated below.
<a href="https://llm-assets.readthedocs.io/en/latest/_images/open_webui_settings.png" target="_blank">
<img src="https://llm-assets.readthedocs.io/en/latest/_images/open_webui_settings.png" width="100%" />
</a>
```eval_rst
.. note::
If you want to use an Ollama server hosted at a different URL, simply update the **Ollama Base URL** to the new URL and press the **Refresh** button to re-confirm the connection to Ollama.
```
#### Pull Model
Go to **Settings -> Models** in the menu, choose a model under **Pull a model from Ollama.com** using the drop-down menu, and then hit the **Download** button on the right. Ollama will automatically download the selected model for you.
<a href="https://llm-assets.readthedocs.io/en/latest/_images/open_webui_pull_models.png" target="_blank">
<img src="https://llm-assets.readthedocs.io/en/latest/_images/open_webui_pull_models.png" width="100%" />
</a>
#### Chat with the Model
Start new conversations with **New chat** in the left-side menu.
On the right-side, choose a downloaded model from the **Select a model** drop-down menu at the top, input your questions into the **Send a Message** textbox at the bottom, and click the button on the right to get responses.
<a href="https://llm-assets.readthedocs.io/en/latest/_images/open_webui_select_model.png" target="_blank">
<img src="https://llm-assets.readthedocs.io/en/latest/_images/open_webui_select_model.png" width="100%" />
</a>
<br/>
Additionally, you can drag and drop a document into the textbox, allowing the LLM to access its contents. The LLM will then generate answers based on the document provided.
<a href="https://llm-assets.readthedocs.io/en/latest/_images/open_webui_chat_2.png" target="_blank">
<img src="https://llm-assets.readthedocs.io/en/latest/_images/open_webui_chat_2.png" width="100%" />
</a>
#### Exit Open-Webui
To shut down the open-webui server, use **Ctrl+C** in the terminal where the open-webui server is runing, then close your browser tab.
### 4. Troubleshooting
##### Error `No module named 'torch._C`
When you encounter the error ``ModuleNotFoundError: No module named 'torch._C'`` after executing ```bash start.sh```, you can resolve it by reinstalling PyTorch. First, use ```pip uninstall torch``` to remove the existing PyTorch installation, and then reinstall it along with its dependencies by running ```pip install torch torchvision torchaudio```.

View file

@ -33,7 +33,7 @@
It is built on top of <strong>Intel Extension for PyTorch</strong> (<strong><code><span>IPEX</span></code></strong>), as well as the excellent work of <strong><code><span>llama.cpp</span></code></strong>, <strong><code><span>bitsandbytes</span></code></strong>, <strong><code><span>vLLM</span></code></strong>, <strong><code><span>qlora</span></code></strong>, <strong><code><span>AutoGPTQ</span></code></strong>, <strong><code><span>AutoAWQ</span></code></strong>, etc. It is built on top of <strong>Intel Extension for PyTorch</strong> (<strong><code><span>IPEX</span></code></strong>), as well as the excellent work of <strong><code><span>llama.cpp</span></code></strong>, <strong><code><span>bitsandbytes</span></code></strong>, <strong><code><span>vLLM</span></code></strong>, <strong><code><span>qlora</span></code></strong>, <strong><code><span>AutoGPTQ</span></code></strong>, <strong><code><span>AutoAWQ</span></code></strong>, etc.
</li></em> </li></em>
<li><em> <li><em>
It provides seamless integration with <a href=doc/LLM/Quickstart/llama_cpp_quickstart.html>llama.cpp</a>, <a href=doc/LLM/Quickstart/webui_quickstart.html>Text-Generation-WebUI</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels>HuggingFace transformers</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/LLM-Finetuning>HuggingFace PEFT</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/LangChain >LangChain</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/LlamaIndex >LlamaIndex</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/Deepspeed-AutoTP >DeepSpeed-AutoTP</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/vLLM-Serving >vLLM</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/src/ipex_llm/serving/fastchat>FastChat</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/LLM-Finetuning/DPO>HuggingFace TRL</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/Applications/autogen >AutoGen</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/ModelScope-Models >ModeScope</a>, etc. It provides seamless integration with <a href=doc/LLM/Quickstart/llama_cpp_quickstart.html>llama.cpp</a>, <a href=doc/LLM/Quickstart/ollama_quickstart.html>ollama</a>, <a href=doc/LLM/Quickstart/webui_quickstart.html>Text-Generation-WebUI</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels>HuggingFace transformers</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/LLM-Finetuning>HuggingFace PEFT</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/LangChain >LangChain</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/LlamaIndex >LlamaIndex</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/Deepspeed-AutoTP >DeepSpeed-AutoTP</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/vLLM-Serving >vLLM</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/src/ipex_llm/serving/fastchat>FastChat</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/LLM-Finetuning/DPO>HuggingFace TRL</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/Applications/autogen >AutoGen</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/ModelScope-Models >ModeScope</a>, etc.
</li></em> </li></em>
<li><em> <li><em>
<strong>50+ models</strong> have been optimized/verified on <code><span>ipex-llm</span></code> (including LLaMA2, Mistral, Mixtral, Gemma, LLaVA, Whisper, ChatGLM, Baichuan, Qwen, RWKV, and more); see the complete list <a href=#verified-models>here</a>. <strong>50+ models</strong> have been optimized/verified on <code><span>ipex-llm</span></code> (including LLaMA2, Mistral, Mixtral, Gemma, LLaVA, Whisper, ChatGLM, Baichuan, Qwen, RWKV, and more); see the complete list <a href=#verified-models>here</a>.
@ -44,6 +44,8 @@
************************************************ ************************************************
Latest update 🔥 Latest update 🔥
************************************************ ************************************************
* [2024/04] ``ipex-llm`` now provides C++ interface, which can be used as an accelerated backend for running `llama.cpp <doc/LLM/Quickstart/llama_cpp_quickstart.html>`_ and `ollama <doc/LLM/Quickstart/ollama_quickstart.html>`_ on Intel GPU.
* [2024/03] ``bigdl-llm`` has now become ``ipex-llm`` (see the migration guide `here <doc/LLM/Quickstart/bigdl_llm_migration.html>`_); you may find the original ``BigDL`` project `here <https://github.com/intel-analytics/bigdl-2.x>`_. * [2024/03] ``bigdl-llm`` has now become ``ipex-llm`` (see the migration guide `here <doc/LLM/Quickstart/bigdl_llm_migration.html>`_); you may find the original ``BigDL`` project `here <https://github.com/intel-analytics/bigdl-2.x>`_.
* [2024/02] ``ipex-llm`` now supports directly loading model from `ModelScope <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/ModelScope-Models>`_ (`魔搭 <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/ModelScope-Models>`_). * [2024/02] ``ipex-llm`` now supports directly loading model from `ModelScope <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/ModelScope-Models>`_ (`魔搭 <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/ModelScope-Models>`_).
* [2024/02] ``ipex-llm`` added inital **INT2** support (based on llama.cpp `IQ2 <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels/Advanced-Quantizations/GGUF-IQ2>`_ mechanism), which makes it possible to run large-size LLM (e.g., Mixtral-8x7B) on Intel GPU with 16GB VRAM. * [2024/02] ``ipex-llm`` added inital **INT2** support (based on llama.cpp `IQ2 <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels/Advanced-Quantizations/GGUF-IQ2>`_ mechanism), which makes it possible to run large-size LLM (e.g., Mixtral-8x7B) on Intel GPU with 16GB VRAM.
@ -106,6 +108,10 @@ See the **optimized performance** of ``chatglm2-6b`` and ``llama-2-13b-chat`` mo
``ipex-llm`` Quickstart ``ipex-llm`` Quickstart
************************************************ ************************************************
============================================
Install ``ipex-llm``
============================================
* `Windows GPU <doc/LLM/Quickstart/install_windows_gpu.html>`_: installing ``ipex-llm`` on Windows with Intel GPU * `Windows GPU <doc/LLM/Quickstart/install_windows_gpu.html>`_: installing ``ipex-llm`` on Windows with Intel GPU
* `Linux GPU <doc/LLM/Quickstart/install_linux_gpu.html>`_: installing ``ipex-llm`` on Linux with Intel GPU * `Linux GPU <doc/LLM/Quickstart/install_linux_gpu.html>`_: installing ``ipex-llm`` on Linux with Intel GPU
* `Docker <https://github.com/intel-analytics/ipex-llm/tree/main/docker/llm>`_: using ``ipex-llm`` dockers on Intel CPU and GPU * `Docker <https://github.com/intel-analytics/ipex-llm/tree/main/docker/llm>`_: using ``ipex-llm`` dockers on Intel CPU and GPU
@ -118,7 +124,8 @@ See the **optimized performance** of ``chatglm2-6b`` and ``llama-2-13b-chat`` mo
Run ``ipex-llm`` Run ``ipex-llm``
============================================ ============================================
* `llama.cpp <doc/LLM/Quickstart/llama_cpp_quickstart.html>`_: running **ipex-llm for llama.cpp** (*using C++ interface of* ``ipex-llm`` *as an accelerated backend for* ``llama.cpp`` *on Intel GPU*) * `llama.cpp <doc/LLM/Quickstart/llama_cpp_quickstart.html>`_: running **llama.cpp** (*using C++ interface of* ``ipex-llm`` *as an accelerated backend for* ``llama.cpp``) on Intel GPU
* `ollama <doc/LLM/Quickstart/ollama_quickstart.html>`_: running **ollama** (*using C++ interface of* ``ipex-llm`` *as an accelerated backend for* ``ollama``) on Intel GPU
* `vLLM <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/vLLM-Serving>`_: running ``ipex-llm`` in ``vLLM`` on both Intel `GPU <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/vLLM-Serving>`_ and `CPU <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/vLLM-Serving>`_ * `vLLM <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/vLLM-Serving>`_: running ``ipex-llm`` in ``vLLM`` on both Intel `GPU <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/vLLM-Serving>`_ and `CPU <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/vLLM-Serving>`_
* `FastChat <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/src/ipex_llm/serving/fastchat>`_: running ``ipex-llm`` in ``FastChat`` serving on on both Intel GPU and CPU * `FastChat <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/src/ipex_llm/serving/fastchat>`_: running ``ipex-llm`` in ``FastChat`` serving on on both Intel GPU and CPU
* `LangChain-Chatchat RAG <https://github.com/intel-analytics/Langchain-Chatchat>`_: running ``ipex-llm`` in ``LangChain-Chatchat`` (*Knowledge Base QA using* **RAG** *pipeline*) * `LangChain-Chatchat RAG <https://github.com/intel-analytics/Langchain-Chatchat>`_: running ``ipex-llm`` in ``LangChain-Chatchat`` (*Knowledge Base QA using* **RAG** *pipeline*)

View file

@ -30,6 +30,6 @@ Taking example above, the script will fork 3 processes, each for one xpu, to exe
## Results ## Results
We follow [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) to record our metrics, `acc_norm` for `hellaswag` and `arc_challenge`, `mc2` for `truthful_qa` and `acc` for `mmlu`. For `mmlu`, there are 57 subtasks which means users may need to average them manually to get final result. We follow [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) to record our metrics, `acc_norm` for `hellaswag` and `arc_challenge`, `mc2` for `truthful_qa` and `acc` for `mmlu`. For `mmlu`, there are 57 subtasks which means users may need to average them manually to get final result.
## Summarize the results ## Summarize the results
"""python ```python
python make_table.py <input_dir> python make_table.py <input_dir>
""" ```

View file

@ -48,7 +48,7 @@ task_to_metric = dict(
drop='f1' drop='f1'
) )
def parse_precision(precision, model="bigdl-llm"): def parse_precision(precision, model="ipex-llm"):
result = match(r"([a-zA-Z_]+)(\d+)([a-zA-Z_\d]*)", precision) result = match(r"([a-zA-Z_]+)(\d+)([a-zA-Z_\d]*)", precision)
datatype = result.group(1) datatype = result.group(1)
bit = int(result.group(2)) bit = int(result.group(2))
@ -62,6 +62,6 @@ def parse_precision(precision, model="bigdl-llm"):
else: else:
if model == "hf-causal": if model == "hf-causal":
return f"bnb_type={precision}" return f"bnb_type={precision}"
if model == "bigdl-llm": if model == "ipex-llm":
return f"load_in_low_bit={precision}" return f"load_in_low_bit={precision}"
raise RuntimeError(f"invald precision {precision}") raise RuntimeError(f"invald precision {precision}")

View file

@ -35,7 +35,7 @@ def force_decrease_order(Reorderer):
utils.Reorderer = force_decrease_order(utils.Reorderer) utils.Reorderer = force_decrease_order(utils.Reorderer)
class BigDLLM(AutoCausalLM): class IPEXLLM(AutoCausalLM):
AUTO_MODEL_CLASS = AutoModelForCausalLM AUTO_MODEL_CLASS = AutoModelForCausalLM
AutoCausalLM_ARGS = inspect.getfullargspec(AutoCausalLM.__init__).args AutoCausalLM_ARGS = inspect.getfullargspec(AutoCausalLM.__init__).args
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):

View file

@ -20,8 +20,8 @@ import os
from harness_to_leaderboard import * from harness_to_leaderboard import *
from lm_eval import tasks, evaluator, utils, models from lm_eval import tasks, evaluator, utils, models
from bigdl_llm import BigDLLM from ipexllm import IPEXLLM
models.MODEL_REGISTRY['bigdl-llm'] = BigDLLM # patch bigdl-llm to harness models.MODEL_REGISTRY['ipex-llm'] = IPEXLLM # patch ipex-llm to harness
logging.getLogger("openai").setLevel(logging.WARNING) logging.getLogger("openai").setLevel(logging.WARNING)

View file

@ -22,8 +22,9 @@ from lm_eval import tasks, evaluator, utils, models
from multiprocessing import Queue, Process from multiprocessing import Queue, Process
import multiprocessing as mp import multiprocessing as mp
from contextlib import redirect_stdout, redirect_stderr from contextlib import redirect_stdout, redirect_stderr
from bigdl_llm import BigDLLM
models.MODEL_REGISTRY['bigdl-llm'] = BigDLLM # patch bigdl-llm to harness from ipexllm import IPEXLLM
models.MODEL_REGISTRY['ipex-llm'] = IPEXLLM # patch ipex-llm to harness
logging.getLogger("openai").setLevel(logging.WARNING) logging.getLogger("openai").setLevel(logging.WARNING)

View file

@ -20,6 +20,6 @@ python run.py --model_path meta-llama/Llama-2-7b-chat-hf --precisions float16 sy
- If you want to test perplexity on pre-downloaded datasets, please specify the `<path/to/dataset>` in the `dataset_path` argument in your command. - If you want to test perplexity on pre-downloaded datasets, please specify the `<path/to/dataset>` in the `dataset_path` argument in your command.
## Summarize the results ## Summarize the results
"""python ```python
python make_table.py <input_dir> python make_table.py <input_dir>
""" ```

View file

@ -11,7 +11,7 @@ mkdir autogen
cd autogen cd autogen
# create respective conda environment # create respective conda environment
conda create -n autogen python=3.9 conda create -n autogen python=3.11
conda activate autogen conda activate autogen
# install fastchat-adapted ipex-llm # install fastchat-adapted ipex-llm

View file

@ -10,7 +10,7 @@ To run this example with IPEX-LLM, we have some recommended requirements for you
### 1. Install ### 1. Install
We suggest using conda to manage environment: We suggest using conda to manage environment:
```bash ```bash
conda create -n llm python=3.9 conda create -n llm python=3.11
conda activate llm conda activate llm
pip install ipex-llm[all] # install ipex-llm with 'all' option pip install ipex-llm[all] # install ipex-llm with 'all' option

View file

@ -10,7 +10,7 @@ model = AutoModelForCausalLM.from_pretrained(model_name_or_path, load_in_4bit=Tr
## Prepare Environment ## Prepare Environment
We suggest using conda to manage environment: We suggest using conda to manage environment:
```bash ```bash
conda create -n llm python=3.9 conda create -n llm python=3.11
conda activate llm conda activate llm
pip install --pre --upgrade ipex-llm[all] pip install --pre --upgrade ipex-llm[all]

View file

@ -2,7 +2,7 @@
#### 1. Install Dependencies #### 1. Install Dependencies
Install necessary packages (here Python 3.9 is our test environment): Install necessary packages (here Python 3.11 is our test environment):
```bash ```bash
bash install.sh bash install.sh

View file

@ -34,7 +34,7 @@ In the example [generate.py](./generate.py), we show a basic use case for a AWQ
We suggest using conda to manage environment: We suggest using conda to manage environment:
```bash ```bash
conda create -n llm python=3.9 conda create -n llm python=3.11
conda activate llm conda activate llm
pip install autoawq==0.1.8 --no-deps pip install autoawq==0.1.8 --no-deps

View file

@ -25,7 +25,7 @@ We suggest using conda to manage the Python environment. For more information ab
After installing conda, create a Python environment for IPEX-LLM: After installing conda, create a Python environment for IPEX-LLM:
```bash ```bash
conda create -n llm python=3.9 # recommend to use Python 3.9 conda create -n llm python=3.11 # recommend to use Python 3.11
conda activate llm conda activate llm
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option

View file

@ -9,7 +9,7 @@ In the example [generate.py](./generate.py), we show a basic use case for a Llam
### 1. Install ### 1. Install
We suggest using conda to manage environment: We suggest using conda to manage environment:
```bash ```bash
conda create -n llm python=3.9 conda create -n llm python=3.11
conda activate llm conda activate llm
pip install ipex-llm[all] # install ipex-llm with 'all' option pip install ipex-llm[all] # install ipex-llm with 'all' option

View file

@ -16,7 +16,7 @@ We suggest using conda to manage the Python environment. For more information ab
After installing conda, create a Python environment for IPEX-LLM: After installing conda, create a Python environment for IPEX-LLM:
```bash ```bash
conda create -n llm python=3.9 # recommend to use Python 3.9 conda create -n llm python=3.11 # recommend to use Python 3.11
conda activate llm conda activate llm
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option

View file

@ -16,7 +16,7 @@ We suggest using conda to manage the Python environment. For more information ab
After installing conda, create a Python environment for IPEX-LLM: After installing conda, create a Python environment for IPEX-LLM:
```bash ```bash
conda create -n llm python=3.9 # recommend to use Python 3.9 conda create -n llm python=3.11 # recommend to use Python 3.11
conda activate llm conda activate llm
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option

View file

@ -9,7 +9,7 @@ In the example [generate.py](./generate.py), we show a basic use case for a Baic
### 1. Install ### 1. Install
We suggest using conda to manage environment: We suggest using conda to manage environment:
```bash ```bash
conda create -n llm python=3.9 conda create -n llm python=3.11
conda activate llm conda activate llm
pip install ipex-llm[all] # install ipex-llm with 'all' option pip install ipex-llm[all] # install ipex-llm with 'all' option

View file

@ -9,7 +9,7 @@ In the example [generate.py](./generate.py), we show a basic use case for a Baic
### 1. Install ### 1. Install
We suggest using conda to manage environment: We suggest using conda to manage environment:
```bash ```bash
conda create -n llm python=3.9 conda create -n llm python=3.11
conda activate llm conda activate llm
pip install ipex-llm[all] # install ipex-llm with 'all' option pip install ipex-llm[all] # install ipex-llm with 'all' option

View file

@ -9,7 +9,7 @@ In the example [generate.py](./generate.py), we show a basic use case for a Blue
### 1. Install ### 1. Install
We suggest using conda to manage environment: We suggest using conda to manage environment:
```bash ```bash
conda create -n llm python=3.9 conda create -n llm python=3.11
conda activate llm conda activate llm
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option

View file

@ -16,10 +16,11 @@ We suggest using conda to manage the Python environment. For more information ab
After installing conda, create a Python environment for IPEX-LLM: After installing conda, create a Python environment for IPEX-LLM:
```bash ```bash
conda create -n llm python=3.9 # recommend to use Python 3.9 conda create -n llm python=3.11 # recommend to use Python 3.11
conda activate llm conda activate llm
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
pip install "transformers<4.34.1" # chatglm cannot work with transformers 4.34.1+
``` ```
### 2. Run ### 2. Run

View file

@ -10,7 +10,7 @@ In the example [generate.py](./generate.py), we show a basic use case for a Chat
### 1. Install ### 1. Install
We suggest using conda to manage environment: We suggest using conda to manage environment:
```bash ```bash
conda create -n llm python=3.9 conda create -n llm python=3.11
conda activate llm conda activate llm
pip install ipex-llm[all] # install ipex-llm with 'all' option pip install ipex-llm[all] # install ipex-llm with 'all' option
@ -80,7 +80,7 @@ In the example [streamchat.py](./streamchat.py), we show a basic use case for a
### 1. Install ### 1. Install
We suggest using conda to manage environment: We suggest using conda to manage environment:
```bash ```bash
conda create -n llm python=3.9 conda create -n llm python=3.11
conda activate llm conda activate llm
pip install ipex-llm[all] # install ipex-llm with 'all' option pip install ipex-llm[all] # install ipex-llm with 'all' option

View file

@ -10,7 +10,7 @@ In the example [generate.py](./generate.py), we show a basic use case for a Chat
### 1. Install ### 1. Install
We suggest using conda to manage environment: We suggest using conda to manage environment:
```bash ```bash
conda create -n llm python=3.9 conda create -n llm python=3.11
conda activate llm conda activate llm
pip install --pre --upgrade ipex-llm[all] # install ipex-llm with 'all' option pip install --pre --upgrade ipex-llm[all] # install ipex-llm with 'all' option
@ -81,7 +81,7 @@ In the example [streamchat.py](./streamchat.py), we show a basic use case for a
### 1. Install ### 1. Install
We suggest using conda to manage environment: We suggest using conda to manage environment:
```bash ```bash
conda create -n llm python=3.9 conda create -n llm python=3.11
conda activate llm conda activate llm
pip install --pre --upgrade ipex-llm[all] # install ipex-llm with 'all' option pip install --pre --upgrade ipex-llm[all] # install ipex-llm with 'all' option

View file

@ -9,7 +9,7 @@ In the example [generate.py](./generate.py), we show a basic use case for a Code
### 1. Install ### 1. Install
We suggest using conda to manage environment: We suggest using conda to manage environment:
```bash ```bash
conda create -n llm python=3.9 conda create -n llm python=3.11
conda activate llm conda activate llm
pip install ipex-llm[all] # install ipex-llm with 'all' option pip install ipex-llm[all] # install ipex-llm with 'all' option

View file

@ -16,7 +16,7 @@ We suggest using conda to manage the Python environment. For more information ab
After installing conda, create a Python environment for IPEX-LLM: After installing conda, create a Python environment for IPEX-LLM:
```bash ```bash
conda create -n llm python=3.9 # recommend to use Python 3.9 conda create -n llm python=3.11 # recommend to use Python 3.11
conda activate llm conda activate llm
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option

View file

@ -9,7 +9,7 @@ In the example [generate.py](./generate.py), we show a basic use case for a Deci
### 1. Install ### 1. Install
We suggest using conda to manage environment: We suggest using conda to manage environment:
```bash ```bash
conda create -n llm python=3.9 conda create -n llm python=3.11
conda activate llm conda activate llm
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option

View file

@ -16,7 +16,7 @@ We suggest using conda to manage the Python environment. For more information ab
After installing conda, create a Python environment for IPEX-LLM: After installing conda, create a Python environment for IPEX-LLM:
```bash ```bash
conda create -n llm python=3.9 # recommend to use Python 3.9 conda create -n llm python=3.11 # recommend to use Python 3.11
conda activate llm conda activate llm
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option

View file

@ -9,7 +9,7 @@ In the example [generate.py](./generate.py), we show a basic use case for a Deep
### 1. Install ### 1. Install
We suggest using conda to manage environment: We suggest using conda to manage environment:
```bash ```bash
conda create -n llm python=3.9 conda create -n llm python=3.11
conda activate llm conda activate llm
pip install ipex-llm[all] # install ipex-llm with 'all' option pip install ipex-llm[all] # install ipex-llm with 'all' option

View file

@ -12,7 +12,7 @@ We suggest using conda to manage the Python environment. For more information ab
After installing conda, create a Python environment for IPEX-LLM: After installing conda, create a Python environment for IPEX-LLM:
```bash ```bash
conda create -n llm python=3.9 conda create -n llm python=3.11
conda activate llm conda activate llm
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option

View file

@ -9,7 +9,7 @@ In the example [generate.py](./generate.py), we show a basic use case for a Doll
### 1. Install ### 1. Install
We suggest using conda to manage environment: We suggest using conda to manage environment:
```bash ```bash
conda create -n llm python=3.9 conda create -n llm python=3.11
conda activate llm conda activate llm
pip install ipex-llm[all] # install ipex-llm with 'all' option pip install ipex-llm[all] # install ipex-llm with 'all' option

View file

@ -9,7 +9,7 @@ In the example [generate.py](./generate.py), we show a basic use case for a Doll
### 1. Install ### 1. Install
We suggest using conda to manage environment: We suggest using conda to manage environment:
```bash ```bash
conda create -n llm python=3.9 conda create -n llm python=3.11
conda activate llm conda activate llm
pip install ipex-llm[all] # install ipex-llm with 'all' option pip install ipex-llm[all] # install ipex-llm with 'all' option

View file

@ -10,7 +10,7 @@ In the example [generate.py](./generate.py), we show a basic use case for a Falc
### 1. Install ### 1. Install
We suggest using conda to manage environment: We suggest using conda to manage environment:
```bash ```bash
conda create -n llm python=3.9 conda create -n llm python=3.11
conda activate llm conda activate llm
pip install ipex-llm[all] # install ipex-llm with 'all' option pip install ipex-llm[all] # install ipex-llm with 'all' option

View file

@ -12,7 +12,7 @@ We suggest using conda to manage the Python environment. For more information ab
After installing conda, create a Python environment for IPEX-LLM: After installing conda, create a Python environment for IPEX-LLM:
```bash ```bash
conda create -n llm python=3.9 # recommend to use Python 3.9 conda create -n llm python=3.11 # recommend to use Python 3.11
conda activate llm conda activate llm
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option

View file

@ -11,7 +11,7 @@ We suggest using conda to manage the Python environment. For more information ab
After installing conda, create a Python environment for IPEX-LLM: After installing conda, create a Python environment for IPEX-LLM:
```bash ```bash
conda create -n llm python=3.9 # recommend to use Python 3.9 conda create -n llm python=3.11 # recommend to use Python 3.11
conda activate llm conda activate llm
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option

View file

@ -14,7 +14,7 @@ We suggest using conda to manage the Python environment. For more information ab
After installing conda, create a Python environment for IPEX-LLM: After installing conda, create a Python environment for IPEX-LLM:
```bash ```bash
conda create -n llm python=3.9 # recommend to use Python 3.9 conda create -n llm python=3.11 # recommend to use Python 3.11
conda activate llm conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default # below command will install intel_extension_for_pytorch==2.1.10+xpu as default
@ -27,7 +27,7 @@ pip install transformers==4.38.1
#### 1.2 Installation on Windows #### 1.2 Installation on Windows
We suggest using conda to manage environment: We suggest using conda to manage environment:
```bash ```bash
conda create -n llm python=3.9 libuv conda create -n llm python=3.11 libuv
conda activate llm conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default # below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/

View file

@ -11,7 +11,7 @@ We suggest using conda to manage the Python environment. For more information ab
After installing conda, create a Python environment for IPEX-LLM: After installing conda, create a Python environment for IPEX-LLM:
```bash ```bash
conda create -n llm python=3.9 # recommend to use Python 3.9 conda create -n llm python=3.11 # recommend to use Python 3.11
conda activate llm conda activate llm
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option

View file

@ -10,7 +10,7 @@ In the example [generate.py](./generate.py), we show a basic use case for a Inte
### 1. Install ### 1. Install
We suggest using conda to manage environment: We suggest using conda to manage environment:
```bash ```bash
conda create -n llm python=3.9 conda create -n llm python=3.11
conda activate llm conda activate llm
pip install ipex-llm[all] # install ipex-llm with 'all' option pip install ipex-llm[all] # install ipex-llm with 'all' option

View file

@ -10,7 +10,7 @@ In the example [generate.py](./generate.py), we show a basic use case for a Inte
### 1. Install ### 1. Install
We suggest using conda to manage environment: We suggest using conda to manage environment:
```bash ```bash
conda create -n llm python=3.9 conda create -n llm python=3.11
conda activate llm conda activate llm
pip install --pre --upgrade ipex-llm[all] # install ipex-llm with 'all' option pip install --pre --upgrade ipex-llm[all] # install ipex-llm with 'all' option

View file

@ -9,7 +9,7 @@ In the example [generate.py](./generate.py), we show a basic use case for a Llam
### 1. Install ### 1. Install
We suggest using conda to manage environment: We suggest using conda to manage environment:
```bash ```bash
conda create -n llm python=3.9 conda create -n llm python=3.11
conda activate llm conda activate llm
pip install ipex-llm[all] # install ipex-llm with 'all' option pip install ipex-llm[all] # install ipex-llm with 'all' option

View file

@ -13,7 +13,7 @@ We suggest using conda to manage the Python environment. For more information ab
After installing conda, create a Python environment for IPEX-LLM: After installing conda, create a Python environment for IPEX-LLM:
```bash ```bash
conda create -n llm python=3.9 # recommend to use Python 3.9 conda create -n llm python=3.11 # recommend to use Python 3.11
conda activate llm conda activate llm
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option

View file

@ -13,7 +13,7 @@ We suggest using conda to manage the Python environment. For more information ab
After installing conda, create a Python environment for IPEX-LLM: After installing conda, create a Python environment for IPEX-LLM:
```bash ```bash
conda create -n llm python=3.9 # recommend to use Python 3.9 conda create -n llm python=3.11 # recommend to use Python 3.11
conda activate llm conda activate llm
# below command will install PyTorch CPU as default # below command will install PyTorch CPU as default

View file

@ -10,7 +10,7 @@ In the example [generate.py](./generate.py), we show a basic use case for a MOSS
### 1. Install ### 1. Install
We suggest using conda to manage environment: We suggest using conda to manage environment:
```bash ```bash
conda create -n llm python=3.9 conda create -n llm python=3.11
conda activate llm conda activate llm
pip install ipex-llm[all] # install ipex-llm with 'all' option pip install ipex-llm[all] # install ipex-llm with 'all' option

View file

@ -9,7 +9,7 @@ In the example [generate.py](./generate.py), we show a basic use case for an MPT
### 1. Install ### 1. Install
We suggest using conda to manage environment: We suggest using conda to manage environment:
```bash ```bash
conda create -n llm python=3.9 conda create -n llm python=3.11
conda activate llm conda activate llm
pip install ipex-llm[all] # install ipex-llm with 'all' option pip install ipex-llm[all] # install ipex-llm with 'all' option

View file

@ -16,7 +16,7 @@ We suggest using conda to manage the Python environment. For more information ab
After installing conda, create a Python environment for IPEX-LLM: After installing conda, create a Python environment for IPEX-LLM:
```bash ```bash
conda create -n llm python=3.9 # recommend to use Python 3.9 conda create -n llm python=3.11 # recommend to use Python 3.11
conda activate llm conda activate llm
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option

View file

@ -16,7 +16,7 @@ We suggest using conda to manage the Python environment. For more information ab
After installing conda, create a Python environment for IPEX-LLM: After installing conda, create a Python environment for IPEX-LLM:
```bash ```bash
conda create -n llm python=3.9 # recommend to use Python 3.9 conda create -n llm python=3.11 # recommend to use Python 3.11
conda activate llm conda activate llm
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option

View file

@ -16,7 +16,7 @@ We suggest using conda to manage the Python environment. For more information ab
After installing conda, create a Python environment for IPEX-LLM: After installing conda, create a Python environment for IPEX-LLM:
```bash ```bash
conda create -n llm python=3.9 # recommend to use Python 3.9 conda create -n llm python=3.11 # recommend to use Python 3.11
conda activate llm conda activate llm
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option

View file

@ -10,7 +10,7 @@ In the example [generate.py](./generate.py), we show a basic use case for a Phoe
### 1. Install ### 1. Install
We suggest using conda to manage environment: We suggest using conda to manage environment:
```bash ```bash
conda create -n llm python=3.9 conda create -n llm python=3.11
conda activate llm conda activate llm
pip install ipex-llm[all] # install ipex-llm with 'all' option pip install ipex-llm[all] # install ipex-llm with 'all' option

View file

@ -11,7 +11,7 @@ We suggest using conda to manage the Python environment. For more information ab
After installing conda, create a Python environment for IPEX-LLM: After installing conda, create a Python environment for IPEX-LLM:
```bash ```bash
conda create -n llm python=3.9 # recommend to use Python 3.9 conda create -n llm python=3.11 # recommend to use Python 3.11
conda activate llm conda activate llm
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option

View file

@ -15,7 +15,7 @@ In the example [generate.py](./generate.py), we show a basic use case for a Qwen
We suggest using conda to manage environment: We suggest using conda to manage environment:
```bash ```bash
conda create -n llm python=3.9 conda create -n llm python=3.11
conda activate llm conda activate llm
pip install ipex-llm[all] # install ipex-llm with 'all' option pip install ipex-llm[all] # install ipex-llm with 'all' option

View file

@ -10,7 +10,7 @@ In the example [generate.py](./generate.py), we show a basic use case for a Qwen
### 1. Install ### 1. Install
We suggest using conda to manage environment: We suggest using conda to manage environment:
```bash ```bash
conda create -n llm python=3.9 conda create -n llm python=3.11
conda activate llm conda activate llm
pip install --pre --upgrade ipex-llm[all] # install ipex-llm with 'all' option pip install --pre --upgrade ipex-llm[all] # install ipex-llm with 'all' option

View file

@ -10,7 +10,7 @@ In the example [generate.py](./generate.py), we show a basic use case for a RedP
### 1. Install ### 1. Install
We suggest using conda to manage environment: We suggest using conda to manage environment:
```bash ```bash
conda create -n llm python=3.9 conda create -n llm python=3.11
conda activate llm conda activate llm
pip install ipex-llm[all] # install ipex-llm with 'all' option pip install ipex-llm[all] # install ipex-llm with 'all' option

View file

@ -11,7 +11,7 @@ We suggest using conda to manage the Python environment. For more information ab
After installing conda, create a Python environment for IPEX-LLM: After installing conda, create a Python environment for IPEX-LLM:
```bash ```bash
conda create -n llm python=3.9 # recommend to use Python 3.9 conda create -n llm python=3.11 # recommend to use Python 3.11
conda activate llm conda activate llm
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option

View file

@ -9,7 +9,7 @@ In the example [generate.py](./generate.py), we show a basic use case for a Skyw
### 1. Install ### 1. Install
We suggest using conda to manage environment: We suggest using conda to manage environment:
```bash ```bash
conda create -n llm python=3.9 conda create -n llm python=3.11
conda activate llm conda activate llm
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option

View file

@ -9,7 +9,7 @@ In the example [generate.py](./generate.py), we show a basic use case for a SOLA
### 1. Install ### 1. Install
We suggest using conda to manage environment: We suggest using conda to manage environment:
```bash ```bash
conda create -n llm python=3.9 conda create -n llm python=3.11
conda activate llm conda activate llm
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option

View file

@ -11,7 +11,7 @@ We suggest using conda to manage the Python environment. For more information ab
After installing conda, create a Python environment for IPEX-LLM: After installing conda, create a Python environment for IPEX-LLM:
```bash ```bash
conda create -n llm python=3.9 # recommend to use Python 3.9 conda create -n llm python=3.11 # recommend to use Python 3.11
conda activate llm conda activate llm
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option

View file

@ -9,7 +9,7 @@ In the example [generate.py](./generate.py), we show a basic use case for an Sta
### 1. Install ### 1. Install
We suggest using conda to manage environment: We suggest using conda to manage environment:
```bash ```bash
conda create -n llm python=3.9 conda create -n llm python=3.11
conda activate llm conda activate llm
pip install ipex-llm[all] # install ipex-llm with 'all' option pip install ipex-llm[all] # install ipex-llm with 'all' option

View file

@ -9,7 +9,7 @@ In the example [generate.py](./generate.py), we show a basic use case for a Vicu
### 1. Install ### 1. Install
We suggest using conda to manage environment: We suggest using conda to manage environment:
```bash ```bash
conda create -n llm python=3.9 conda create -n llm python=3.11
conda activate llm conda activate llm
pip install ipex-llm[all] # install ipex-llm with 'all' option pip install ipex-llm[all] # install ipex-llm with 'all' option

View file

@ -10,7 +10,7 @@ In the example [recognize.py](./recognize.py), we show a basic use case for a Wh
### 1. Install ### 1. Install
We suggest using conda to manage environment: We suggest using conda to manage environment:
```bash ```bash
conda create -n llm python=3.9 conda create -n llm python=3.11
conda activate llm conda activate llm
pip install ipex-llm[all] # install ipex-llm with 'all' option pip install ipex-llm[all] # install ipex-llm with 'all' option
@ -66,7 +66,7 @@ In the example [long-segment-recognize.py](./long-segment-recognize.py), we show
### 1. Install ### 1. Install
We suggest using conda to manage environment: We suggest using conda to manage environment:
```bash ```bash
conda create -n llm python=3.9 conda create -n llm python=3.11
conda activate llm conda activate llm
pip install ipex-llm[all] # install ipex-llm with 'all' option pip install ipex-llm[all] # install ipex-llm with 'all' option

View file

@ -9,7 +9,7 @@ In the example [generate.py](./generate.py), we show a basic use case for a Wiza
### 1. Install ### 1. Install
We suggest using conda to manage environment: We suggest using conda to manage environment:
```bash ```bash
conda create -n llm python=3.9 conda create -n llm python=3.11
conda activate llm conda activate llm
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option

View file

@ -11,7 +11,7 @@ We suggest using conda to manage the Python environment. For more information ab
After installing conda, create a Python environment for IPEX-LLM: After installing conda, create a Python environment for IPEX-LLM:
```bash ```bash
conda create -n llm python=3.9 conda create -n llm python=3.11
conda activate llm conda activate llm
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option

View file

@ -13,7 +13,7 @@ We suggest using conda to manage the Python environment. For more information ab
After installing conda, create a Python environment for IPEX-LLM: After installing conda, create a Python environment for IPEX-LLM:
```bash ```bash
conda create -n llm python=3.9 conda create -n llm python=3.11
conda activate llm conda activate llm
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option

View file

@ -16,7 +16,7 @@ We suggest using conda to manage the Python environment. For more information ab
After installing conda, create a Python environment for IPEX-LLM: After installing conda, create a Python environment for IPEX-LLM:
```bash ```bash
conda create -n llm python=3.9 # recommend to use Python 3.9 conda create -n llm python=3.11 # recommend to use Python 3.11
conda activate llm conda activate llm
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option

View file

@ -5,7 +5,7 @@ In this example, we show a pipeline to apply IPEX-LLM low-bit optimizations (inc
## Prepare Environment ## Prepare Environment
We suggest using conda to manage environment: We suggest using conda to manage environment:
```bash ```bash
conda create -n llm python=3.9 conda create -n llm python=3.11
conda activate llm conda activate llm
pip install --pre --upgrade ipex-llm[all] pip install --pre --upgrade ipex-llm[all]

View file

@ -5,7 +5,7 @@ In this example, we show a pipeline to apply IPEX-LLM low-bit optimizations (inc
## Prepare Environment ## Prepare Environment
We suggest using conda to manage environment: We suggest using conda to manage environment:
```bash ```bash
conda create -n llm python=3.9 conda create -n llm python=3.11
conda activate llm conda activate llm
pip install --pre --upgrade ipex-llm[all] pip install --pre --upgrade ipex-llm[all]

View file

@ -10,7 +10,7 @@ In the example [generate.py](./generate.py), we show a basic use case for a Chat
### 1. Install ### 1. Install
We suggest using conda to manage environment: We suggest using conda to manage environment:
```bash ```bash
conda create -n llm python=3.9 conda create -n llm python=3.11
conda activate llm conda activate llm
pip install --pre --upgrade ipex-llm[all] # install ipex-llm with 'all' option pip install --pre --upgrade ipex-llm[all] # install ipex-llm with 'all' option

View file

@ -7,7 +7,7 @@ In this example, we show a pipeline to convert a large language model to IPEX-LL
## Prepare Environment ## Prepare Environment
We suggest using conda to manage environment: We suggest using conda to manage environment:
```bash ```bash
conda create -n llm python=3.9 conda create -n llm python=3.11
conda activate llm conda activate llm
pip install --pre --upgrade ipex-llm[all] pip install --pre --upgrade ipex-llm[all]

View file

@ -11,7 +11,7 @@ We suggest using conda to manage the Python environment. For more information ab
After installing conda, create a Python environment for IPEX-LLM: After installing conda, create a Python environment for IPEX-LLM:
```bash ```bash
conda create -n llm python=3.9 # recommend to use Python 3.9 conda create -n llm python=3.11 # recommend to use Python 3.11
conda activate llm conda activate llm
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option

View file

@ -11,7 +11,7 @@ We suggest using conda to manage the Python environment. For more information ab
After installing conda, create a Python environment for IPEX-LLM: After installing conda, create a Python environment for IPEX-LLM:
```bash ```bash
conda create -n llm python=3.9 # recommend to use Python 3.9 conda create -n llm python=3.11 # recommend to use Python 3.11
conda activate llm conda activate llm
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option

View file

@ -11,7 +11,7 @@ We suggest using conda to manage the Python environment. For more information ab
After installing conda, create a Python environment for IPEX-LLM: After installing conda, create a Python environment for IPEX-LLM:
```bash ```bash
conda create -n llm python=3.9 # recommend to use Python 3.9 conda create -n llm python=3.11 # recommend to use Python 3.11
conda activate llm conda activate llm
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option

View file

@ -11,7 +11,7 @@ We suggest using conda to manage the Python environment. For more information ab
After installing conda, create a Python environment for IPEX-LLM: After installing conda, create a Python environment for IPEX-LLM:
```bash ```bash
conda create -n llm python=3.9 # recommend to use Python 3.9 conda create -n llm python=3.11 # recommend to use Python 3.11
conda activate llm conda activate llm
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option

Some files were not shown because too many files have changed in this diff Show more