parent
92ea54b512
commit
5eee1976ac
4 changed files with 219 additions and 0 deletions
|
|
@ -55,6 +55,9 @@
|
|||
<li>
|
||||
<a href="doc/LLM/Quickstart/fastchat_quickstart.html">Run IPEX-LLM Serving with FastChat</a>
|
||||
</li>
|
||||
<li>
|
||||
<a href="doc/LLM/Quickstart/axolotl_quickstart.html">Finetune LLM with Axolotl on Intel GPU without coding</a>
|
||||
</li>
|
||||
</ul>
|
||||
</li>
|
||||
<li>
|
||||
|
|
|
|||
|
|
@ -32,6 +32,7 @@ subtrees:
|
|||
- file: doc/LLM/Quickstart/ollama_quickstart
|
||||
- file: doc/LLM/Quickstart/llama3_llamacpp_ollama_quickstart
|
||||
- file: doc/LLM/Quickstart/fastchat_quickstart
|
||||
- file: doc/LLM/Quickstart/axolotl_quickstart
|
||||
- file: doc/LLM/Overview/KeyFeatures/index
|
||||
title: "Key Features"
|
||||
subtrees:
|
||||
|
|
|
|||
214
docs/readthedocs/source/doc/LLM/Quickstart/axolotl_quickstart.md
Normal file
214
docs/readthedocs/source/doc/LLM/Quickstart/axolotl_quickstart.md
Normal file
|
|
@ -0,0 +1,214 @@
|
|||
# Finetune LLM with Axolotl on Intel GPU without coding
|
||||
|
||||
[Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) is a popular tool designed to streamline the fine-tuning of various AI models, offering support for multiple configurations and architectures. You can now use [`ipex-llm`](https://github.com/intel-analytics/ipex-llm) as an accelerated backend for `Axolotl` running on Intel **GPU** *(e.g., local PC with iGPU, discrete GPU such as Arc, Flex and Max)*.
|
||||
|
||||
See the demo of finetuning LLaMA2-7B on Intel Arc GPU below.
|
||||
|
||||
## Quickstart
|
||||
|
||||
### 0. Prerequisites
|
||||
|
||||
IPEX-LLM's support for [Axolotl v0.4.0](https://github.com/OpenAccess-AI-Collective/axolotl/tree/v0.4.0) is only available for Linux system. We recommend Ubuntu 20.04 or later (Ubuntu 22.04 is preferred).
|
||||
|
||||
Visit the [Install IPEX-LLM on Linux with Intel GPU](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/install_linux_gpu.html), follow [Install Intel GPU Driver](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/install_linux_gpu.html#install-intel-gpu-driver) and [Install oneAPI](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/install_linux_gpu.html#install-oneapi) to install GPU driver and Intel® oneAPI Base Toolkit 2024.0.
|
||||
|
||||
### 1. Install IPEX-LLM for Axolotl
|
||||
|
||||
Create a new conda env, and install `ipex-llm[xpu]`.
|
||||
|
||||
```cmd
|
||||
conda create -n axolotl python=3.11
|
||||
conda activate axolotl
|
||||
# install ipex-llm
|
||||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||
```
|
||||
|
||||
Install [axolotl v0.4.0](https://github.com/OpenAccess-AI-Collective/axolotl/tree/v0.4.0) from git.
|
||||
|
||||
```cmd
|
||||
# install axolotl v0.4.0
|
||||
git clone https://github.com/OpenAccess-AI-Collective/axolotl/tree/v0.4.0
|
||||
cd axolotl
|
||||
# replace requirements.txt
|
||||
remove requirements.txt
|
||||
wget -O requirements.txt https://github.com/intel-analytics/ipex-llm/blob/main/python/llm/example/GPU/LLM-Finetuning/axolotl/requirements-xpu.txt
|
||||
pip install -e .
|
||||
pip install transformers==4.36.0
|
||||
# to avoid https://github.com/OpenAccess-AI-Collective/axolotl/issues/1544
|
||||
pip install datasets==2.15.0
|
||||
# prepare axolotl entrypoints
|
||||
wget https://github.com/intel-analytics/ipex-llm/blob/main/python/llm/example/GPU/LLM-Finetuning/axolotl/finetune.py
|
||||
wget https://github.com/intel-analytics/ipex-llm/blob/main/python/llm/example/GPU/LLM-Finetuning/axolotl/train.py
|
||||
```
|
||||
|
||||
**After the installation, you should have created a conda environment, named `axolotl` for instance, for running `Axolotl` commands with IPEX-LLM.**
|
||||
|
||||
### 2. Example: Finetune Llama-2-7B with Axolotl
|
||||
|
||||
The following example will introduce finetuning [Llama-2-7B](https://huggingface.co/meta-llama/Llama-2-7b) with [alpaca_2k_test](https://huggingface.co/datasets/mhenrichsen/alpaca_2k_test) dataset using LoRA and QLoRA.
|
||||
|
||||
Note that you don't need to write any code in this example.
|
||||
|
||||
| Model | Dataset | Finetune method |
|
||||
|-------|-------|-------|
|
||||
| Llama-2-7B | alpaca_2k_test | LoRA (Low-Rank Adaptation) |
|
||||
| Llama-2-7B | alpaca_2k_test | QLoRA (Quantized Low-Rank Adaptation) |
|
||||
|
||||
For more technical details, please refer to [Llama 2](https://arxiv.org/abs/2307.09288), [LoRA](https://arxiv.org/abs/2106.09685) and [QLoRA](https://arxiv.org/abs/2305.14314).
|
||||
|
||||
#### 2.1 Download Llama-2-7B and alpaca_2k_test
|
||||
|
||||
By default, Axolotl will automatically download models and datasets from Huggingface. Please ensure you have login to Huggingface.
|
||||
|
||||
```cmd
|
||||
huggingface-cli login
|
||||
```
|
||||
|
||||
If you prefer offline models and datasets, please download [Llama-2-7B](https://huggingface.co/meta-llama/Llama-2-7b) and [alpaca_2k_test](https://huggingface.co/datasets/mhenrichsen/alpaca_2k_test). Then, set `HF_HUB_OFFLINE=1` to avoid connecting to Huggingface.
|
||||
|
||||
```cmd
|
||||
export HF_HUB_OFFLINE=1
|
||||
```
|
||||
|
||||
#### 2.2 Set Environment Variables
|
||||
|
||||
```eval_rst
|
||||
.. note::
|
||||
|
||||
This is a required step on for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.
|
||||
```
|
||||
|
||||
Configure oneAPI variables by running the following command:
|
||||
|
||||
```eval_rst
|
||||
.. tabs::
|
||||
.. tab:: Linux
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
|
||||
```
|
||||
|
||||
Configure accelerate to avoid training with CPU
|
||||
|
||||
```cmd
|
||||
accelerate config
|
||||
```
|
||||
|
||||
Please answer `NO` in option `Do you want to run your training on CPU only (even if a GPU / Apple Silicon device is available)? [yes/NO]:`.
|
||||
|
||||
After finishing accelerate config, check if `use_cpu` is disabled (i.e., `use_cpu: false`) in accelerate config file (`~/.cache/huggingface/accelerate/default_config.yaml`).
|
||||
|
||||
#### 2.3 LoRA finetune
|
||||
|
||||
Prepare `lora.yml` for Axolotl LoRA finetune. You can download a template from github.
|
||||
|
||||
```cmd
|
||||
wget https://github.com/intel-analytics/ipex-llm/blob/main/python/llm/example/GPU/LLM-Finetuning/axolotl/lora.yml
|
||||
```
|
||||
|
||||
**If you are using the offline model and dataset in local env**, please modify the model path and dataset path in `lora.yml`. Otherwise, keep them unchanged.
|
||||
|
||||
```yaml
|
||||
# Please change to local path if model is offline, e.g., /path/to/model/Llama-2-7b-hf
|
||||
base_model: NousResearch/Llama-2-7b-hf
|
||||
datasets:
|
||||
# Please change to local path if dataset is offline, e.g., /path/to/dataset/alpaca_2k_test
|
||||
- path: mhenrichsen/alpaca_2k_test
|
||||
type: alpaca
|
||||
```
|
||||
|
||||
Modify LoRA parameters, such as `lora_r` and `lora_alpha`, etc.
|
||||
|
||||
```yaml
|
||||
adapter: lora
|
||||
lora_model_dir:
|
||||
|
||||
lora_r: 16
|
||||
lora_alpha: 16
|
||||
lora_dropout: 0.05
|
||||
lora_target_linear: true
|
||||
lora_fan_in_fan_out:
|
||||
```
|
||||
|
||||
Launch LoRA training with the following command.
|
||||
|
||||
```cmd
|
||||
accelerate launch finetune.py lora.yml
|
||||
```
|
||||
|
||||
In Axolotl v0.4.0, you can use `train.py` instead of `-m axolotl.cli.train` or `finetune.py`.
|
||||
|
||||
```cmd
|
||||
accelerate launch train.py lora.yml
|
||||
```
|
||||
|
||||
#### 2.4 QLoRA finetune
|
||||
|
||||
Prepare `lora.yml` for QLoRA finetune. You can download a template from github.
|
||||
|
||||
```cmd
|
||||
wget https://github.com/intel-analytics/ipex-llm/blob/main/python/llm/example/GPU/LLM-Finetuning/axolotl/qlora.yml
|
||||
```
|
||||
|
||||
**If you are using the offline model and dataset in local env**, please modify the model path and dataset path in `qlora.yml`. Otherwise, keep them unchanged.
|
||||
|
||||
```yaml
|
||||
# Please change to local path if model is offline, e.g., /path/to/model/Llama-2-7b-hf
|
||||
base_model: NousResearch/Llama-2-7b-hf
|
||||
datasets:
|
||||
# Please change to local path if dataset is offline, e.g., /path/to/dataset/alpaca_2k_test
|
||||
- path: mhenrichsen/alpaca_2k_test
|
||||
type: alpaca
|
||||
```
|
||||
|
||||
Modify QLoRA parameters, such as `lora_r` and `lora_alpha`, etc.
|
||||
|
||||
```yaml
|
||||
adapter: qlora
|
||||
lora_model_dir:
|
||||
|
||||
lora_r: 16
|
||||
lora_alpha: 16
|
||||
lora_dropout: 0.05
|
||||
lora_target_modules:
|
||||
lora_target_linear: true
|
||||
lora_fan_in_fan_out:
|
||||
```
|
||||
|
||||
Launch LoRA training with the following command.
|
||||
|
||||
```cmd
|
||||
accelerate launch finetune.py qlora.yml
|
||||
```
|
||||
|
||||
In Axolotl v0.4.0, you can use `train.py` instead of `-m axolotl.cli.train` or `finetune.py`.
|
||||
|
||||
```cmd
|
||||
accelerate launch train.py qlora.yml
|
||||
```
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
#### TypeError: PosixPath
|
||||
|
||||
Error message: `TypeError: argument of type 'PosixPath' is not iterable`
|
||||
|
||||
This issue is related to [axolotl #1544](https://github.com/OpenAccess-AI-Collective/axolotl/issues/1544). It can be fixed by downgrading datasets to 2.15.0.
|
||||
|
||||
```cmd
|
||||
pip install datasets==2.15.0
|
||||
```
|
||||
|
||||
#### RuntimeError: out of device memory
|
||||
|
||||
Error message: `RuntimeError: Allocation is out of device memory on current platform.`
|
||||
|
||||
This issue is caused by running out of GPU memory. Please reduce `lora_r` or `micro_batch_size` in `qlora.yml` or `lora.yml`, or reduce data using in training.
|
||||
|
||||
#### OSError: libmkl_intel_lp64.so.2
|
||||
|
||||
Error message: `OSError: libmkl_intel_lp64.so.2: cannot open shared object file: No such file or directory`
|
||||
|
||||
oneAPI environment is not correctly set. Please refer to [Set Environment Variables](#set-environment-variables).
|
||||
|
|
@ -21,6 +21,7 @@ This section includes efficient guide to show you how to:
|
|||
* `Run Ollama with IPEX-LLM on Intel GPU <./ollama_quickstart.html>`_
|
||||
* `Run Llama 3 on Intel GPU using llama.cpp and ollama with IPEX-LLM <./llama3_llamacpp_ollama_quickstart.html>`_
|
||||
* `Run IPEX-LLM Serving with FastChat <./fastchat_quickstart.html>`_
|
||||
* `Finetune LLM with Axolotl on Intel GPU without coding <./axolotl_quickstart.html>`_
|
||||
|
||||
.. |bigdl_llm_migration_guide| replace:: ``bigdl-llm`` Migration Guide
|
||||
.. _bigdl_llm_migration_guide: bigdl_llm_migration.html
|
||||
|
|
|
|||
Loading…
Reference in a new issue