diff --git a/docs/readthedocs/source/_templates/sidebar_quicklinks.html b/docs/readthedocs/source/_templates/sidebar_quicklinks.html
index 9465e770..3afcebb7 100644
--- a/docs/readthedocs/source/_templates/sidebar_quicklinks.html
+++ b/docs/readthedocs/source/_templates/sidebar_quicklinks.html
@@ -55,6 +55,9 @@
                     
                         Run IPEX-LLM Serving with FastChat
                     
+                    
+                        Finetune LLM with Axolotl on Intel GPU without coding
+                    
                 
             
             
diff --git a/docs/readthedocs/source/_toc.yml b/docs/readthedocs/source/_toc.yml
index 5076ea0b..482210e6 100644
--- a/docs/readthedocs/source/_toc.yml
+++ b/docs/readthedocs/source/_toc.yml
@@ -32,6 +32,7 @@ subtrees:
                 - file: doc/LLM/Quickstart/ollama_quickstart
                 - file: doc/LLM/Quickstart/llama3_llamacpp_ollama_quickstart
                 - file: doc/LLM/Quickstart/fastchat_quickstart
+                - file: doc/LLM/Quickstart/axolotl_quickstart
           - file: doc/LLM/Overview/KeyFeatures/index
             title: "Key Features"
             subtrees:
diff --git a/docs/readthedocs/source/doc/LLM/Quickstart/axolotl_quickstart.md b/docs/readthedocs/source/doc/LLM/Quickstart/axolotl_quickstart.md
new file mode 100644
index 00000000..cd008d99
--- /dev/null
+++ b/docs/readthedocs/source/doc/LLM/Quickstart/axolotl_quickstart.md
@@ -0,0 +1,214 @@
+# Finetune LLM with Axolotl on Intel GPU without coding
+
+[Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) is a popular tool designed to streamline the fine-tuning of various AI models, offering support for multiple configurations and architectures. You can now use [`ipex-llm`](https://github.com/intel-analytics/ipex-llm) as an accelerated backend for `Axolotl` running on Intel **GPU** *(e.g., local PC with iGPU, discrete GPU such as Arc, Flex and Max)*.
+
+See the demo of finetuning LLaMA2-7B on Intel Arc GPU below.
+
+## Quickstart
+
+### 0. Prerequisites
+
+IPEX-LLM's support for [Axolotl v0.4.0](https://github.com/OpenAccess-AI-Collective/axolotl/tree/v0.4.0) is only available for Linux system. We recommend Ubuntu 20.04 or later (Ubuntu 22.04 is preferred).
+
+Visit the [Install IPEX-LLM on Linux with Intel GPU](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/install_linux_gpu.html), follow [Install Intel GPU Driver](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/install_linux_gpu.html#install-intel-gpu-driver) and [Install oneAPI](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/install_linux_gpu.html#install-oneapi) to install GPU driver and IntelĀ® oneAPI Base Toolkit 2024.0.
+
+### 1. Install IPEX-LLM for Axolotl
+
+Create a new conda env, and install `ipex-llm[xpu]`.
+
+```cmd
+conda create -n axolotl python=3.11
+conda activate axolotl
+# install ipex-llm
+pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
+```
+
+Install [axolotl v0.4.0](https://github.com/OpenAccess-AI-Collective/axolotl/tree/v0.4.0) from git.
+
+```cmd
+# install axolotl v0.4.0
+git clone https://github.com/OpenAccess-AI-Collective/axolotl/tree/v0.4.0
+cd axolotl
+# replace requirements.txt
+remove requirements.txt
+wget -O requirements.txt https://github.com/intel-analytics/ipex-llm/blob/main/python/llm/example/GPU/LLM-Finetuning/axolotl/requirements-xpu.txt
+pip install -e .
+pip install transformers==4.36.0
+# to avoid https://github.com/OpenAccess-AI-Collective/axolotl/issues/1544
+pip install datasets==2.15.0
+# prepare axolotl entrypoints
+wget https://github.com/intel-analytics/ipex-llm/blob/main/python/llm/example/GPU/LLM-Finetuning/axolotl/finetune.py
+wget https://github.com/intel-analytics/ipex-llm/blob/main/python/llm/example/GPU/LLM-Finetuning/axolotl/train.py
+```
+
+**After the installation, you should have created a conda environment, named `axolotl` for instance, for running `Axolotl` commands with IPEX-LLM.**
+
+### 2. Example: Finetune Llama-2-7B with Axolotl
+
+The following example will introduce finetuning [Llama-2-7B](https://huggingface.co/meta-llama/Llama-2-7b) with [alpaca_2k_test](https://huggingface.co/datasets/mhenrichsen/alpaca_2k_test) dataset using LoRA and QLoRA.
+
+Note that you don't need to write any code in this example.
+
+| Model | Dataset | Finetune method |
+|-------|-------|-------|
+| Llama-2-7B | alpaca_2k_test | LoRA (Low-Rank Adaptation)  |
+| Llama-2-7B | alpaca_2k_test | QLoRA (Quantized Low-Rank Adaptation) |
+
+For more technical details, please refer to [Llama 2](https://arxiv.org/abs/2307.09288), [LoRA](https://arxiv.org/abs/2106.09685) and [QLoRA](https://arxiv.org/abs/2305.14314).
+
+#### 2.1 Download Llama-2-7B and alpaca_2k_test
+
+By default, Axolotl will automatically download models and datasets from Huggingface. Please ensure you have login to Huggingface.
+
+```cmd
+huggingface-cli login
+```
+
+If you prefer offline models and datasets, please download [Llama-2-7B](https://huggingface.co/meta-llama/Llama-2-7b) and [alpaca_2k_test](https://huggingface.co/datasets/mhenrichsen/alpaca_2k_test). Then, set `HF_HUB_OFFLINE=1` to avoid connecting to Huggingface.
+
+```cmd
+export HF_HUB_OFFLINE=1
+```
+
+#### 2.2 Set Environment Variables
+
+```eval_rst
+.. note::
+
+   This is a required step on for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.
+```
+
+Configure oneAPI variables by running the following command:
+
+```eval_rst
+.. tabs::
+   .. tab:: Linux
+
+      .. code-block:: bash
+
+         source /opt/intel/oneapi/setvars.sh
+
+```
+
+Configure accelerate to avoid training with CPU
+
+```cmd
+accelerate config
+```
+
+Please answer `NO` in option `Do you want to run your training on CPU only (even if a GPU / Apple Silicon device is available)? [yes/NO]:`.
+
+After finishing accelerate config, check if `use_cpu` is disabled (i.e., `use_cpu: false`) in accelerate config file (`~/.cache/huggingface/accelerate/default_config.yaml`).
+
+#### 2.3 LoRA finetune
+
+Prepare `lora.yml` for Axolotl LoRA finetune. You can download a template from github.
+
+```cmd
+wget https://github.com/intel-analytics/ipex-llm/blob/main/python/llm/example/GPU/LLM-Finetuning/axolotl/lora.yml
+```
+
+**If you are using the offline model and dataset in local env**, please modify the model path and dataset path in `lora.yml`. Otherwise, keep them unchanged.
+
+```yaml
+# Please change to local path if model is offline, e.g., /path/to/model/Llama-2-7b-hf
+base_model: NousResearch/Llama-2-7b-hf
+datasets:
+  # Please change to local path if dataset is offline, e.g., /path/to/dataset/alpaca_2k_test
+  - path: mhenrichsen/alpaca_2k_test
+    type: alpaca
+```
+
+Modify LoRA parameters, such as `lora_r` and `lora_alpha`, etc.
+
+```yaml
+adapter: lora
+lora_model_dir:
+
+lora_r: 16
+lora_alpha: 16
+lora_dropout: 0.05
+lora_target_linear: true
+lora_fan_in_fan_out:
+```
+
+Launch LoRA training with the following command.
+
+```cmd
+accelerate launch finetune.py lora.yml
+```
+
+In Axolotl v0.4.0, you can use `train.py` instead of `-m axolotl.cli.train` or `finetune.py`.
+
+```cmd
+accelerate launch train.py lora.yml
+```
+
+#### 2.4 QLoRA finetune
+
+Prepare `lora.yml` for QLoRA finetune. You can download a template from github.
+
+```cmd
+wget https://github.com/intel-analytics/ipex-llm/blob/main/python/llm/example/GPU/LLM-Finetuning/axolotl/qlora.yml
+```
+
+**If you are using the offline model and dataset in local env**, please modify the model path and dataset path in `qlora.yml`. Otherwise, keep them unchanged.
+
+```yaml
+# Please change to local path if model is offline, e.g., /path/to/model/Llama-2-7b-hf
+base_model: NousResearch/Llama-2-7b-hf
+datasets:
+  # Please change to local path if dataset is offline, e.g., /path/to/dataset/alpaca_2k_test
+  - path: mhenrichsen/alpaca_2k_test
+    type: alpaca
+```
+
+Modify QLoRA parameters, such as `lora_r` and `lora_alpha`, etc.
+
+```yaml
+adapter: qlora
+lora_model_dir:
+
+lora_r: 16
+lora_alpha: 16
+lora_dropout: 0.05
+lora_target_modules:
+lora_target_linear: true
+lora_fan_in_fan_out:
+```
+
+Launch LoRA training with the following command.
+
+```cmd
+accelerate launch finetune.py qlora.yml
+```
+
+In Axolotl v0.4.0, you can use `train.py` instead of `-m axolotl.cli.train` or `finetune.py`.
+
+```cmd
+accelerate launch train.py qlora.yml
+```
+
+## Troubleshooting
+
+#### TypeError: PosixPath
+
+Error message: `TypeError: argument of type 'PosixPath' is not iterable`
+
+This issue is related to [axolotl #1544](https://github.com/OpenAccess-AI-Collective/axolotl/issues/1544). It can be fixed by downgrading datasets to 2.15.0.
+
+```cmd
+pip install datasets==2.15.0
+```
+
+#### RuntimeError: out of device memory
+
+Error message: `RuntimeError: Allocation is out of device memory on current platform.`
+
+This issue is caused by running out of GPU memory. Please reduce `lora_r` or `micro_batch_size` in `qlora.yml` or `lora.yml`, or reduce data using in training.
+
+#### OSError: libmkl_intel_lp64.so.2
+
+Error message: `OSError: libmkl_intel_lp64.so.2: cannot open shared object file: No such file or directory`
+
+oneAPI environment is not correctly set. Please refer to [Set Environment Variables](#set-environment-variables).
diff --git a/docs/readthedocs/source/doc/LLM/Quickstart/index.rst b/docs/readthedocs/source/doc/LLM/Quickstart/index.rst
index fc6d3121..4dbf6643 100644
--- a/docs/readthedocs/source/doc/LLM/Quickstart/index.rst
+++ b/docs/readthedocs/source/doc/LLM/Quickstart/index.rst
@@ -21,6 +21,7 @@ This section includes efficient guide to show you how to:
 * `Run Ollama with IPEX-LLM on Intel GPU <./ollama_quickstart.html>`_
 * `Run Llama 3 on Intel GPU using llama.cpp and ollama with IPEX-LLM <./llama3_llamacpp_ollama_quickstart.html>`_
 * `Run IPEX-LLM Serving with FastChat <./fastchat_quickstart.html>`_
+* `Finetune LLM with Axolotl on Intel GPU without coding <./axolotl_quickstart.html>`_
 
 .. |bigdl_llm_migration_guide| replace:: ``bigdl-llm`` Migration Guide
 .. _bigdl_llm_migration_guide: bigdl_llm_migration.html