Add deepsped-autoTP-Fastapi serving (#10748)
* add deepsped-autoTP-Fastapi serving * add readme * add license * update * update * fix
This commit is contained in:
parent
a7c12020b4
commit
599a88db53
5 changed files with 274 additions and 2 deletions
84
python/llm/example/GPU/Deepspeed-AutoTP-FastAPI/README.md
Normal file
84
python/llm/example/GPU/Deepspeed-AutoTP-FastAPI/README.md
Normal file
|
|
@ -0,0 +1,84 @@
|
||||||
|
# Run IPEX-LLM serving on Multiple Intel GPUs using DeepSpeed AutoTP and FastApi
|
||||||
|
|
||||||
|
This example demonstrates how to run IPEX-LLM serving on multiple [Intel GPUs](../README.md) by leveraging DeepSpeed AutoTP.
|
||||||
|
|
||||||
|
## Requirements
|
||||||
|
|
||||||
|
To run this example with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information. For this particular example, you will need at least two GPUs on your machine.
|
||||||
|
|
||||||
|
## Example
|
||||||
|
|
||||||
|
### 1. Install
|
||||||
|
|
||||||
|
```bash
|
||||||
|
conda create -n llm python=3.11
|
||||||
|
conda activate llm
|
||||||
|
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
|
||||||
|
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||||
|
pip install oneccl_bind_pt==2.1.100 --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||||
|
# configures OneAPI environment variables
|
||||||
|
source /opt/intel/oneapi/setvars.sh
|
||||||
|
pip install git+https://github.com/microsoft/DeepSpeed.git@ed8aed5
|
||||||
|
pip install git+https://github.com/intel/intel-extension-for-deepspeed.git@0eb734b
|
||||||
|
pip install mpi4py fastapi uvicorn
|
||||||
|
conda install -c conda-forge -y gperftools=2.10 # to enable tcmalloc
|
||||||
|
```
|
||||||
|
|
||||||
|
> **Important**: IPEX 2.1.10+xpu requires Intel® oneAPI Base Toolkit's version == 2024.0. Please make sure you have installed the correct version.
|
||||||
|
|
||||||
|
### 2. Run tensor parallel inference on multiple GPUs
|
||||||
|
|
||||||
|
When we run the model in a distributed manner across two GPUs, the memory consumption of each GPU is only half of what it was originally, and the GPUs can work simultaneously during inference computation.
|
||||||
|
|
||||||
|
We provide example usage for `Llama-2-7b-chat-hf` model running on Arc A770
|
||||||
|
|
||||||
|
Run Llama-2-7b-chat-hf on two Intel Arc A770:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
|
||||||
|
# Before run this script, you should adjust the YOUR_REPO_ID_OR_MODEL_PATH in last line
|
||||||
|
# If you want to change server port, you can set port parameter in last line
|
||||||
|
bash run_llama2_7b_chat_hf_arc_2_card.sh
|
||||||
|
```
|
||||||
|
|
||||||
|
If you successfully run the serving, you can get output like this:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
[0] INFO: Started server process [120071]
|
||||||
|
[0] INFO: Waiting for application startup.
|
||||||
|
[0] INFO: Application startup complete.
|
||||||
|
[0] INFO: Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to quit)
|
||||||
|
```
|
||||||
|
|
||||||
|
> **Note**: You could change `NUM_GPUS` to the number of GPUs you have on your machine. And you could also specify other low bit optimizations through `--low-bit`.
|
||||||
|
|
||||||
|
### 3. Sample Input and Output
|
||||||
|
|
||||||
|
We can use `curl` to test serving api
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Set http_proxy and https_proxy to null to ensure that requests are not forwarded by a proxy.
|
||||||
|
export http_proxy=
|
||||||
|
export https_proxy=
|
||||||
|
|
||||||
|
curl -X 'POST' \
|
||||||
|
'http://127.0.0.1:8000/generate/' \
|
||||||
|
-H 'accept: application/json' \
|
||||||
|
-H 'Content-Type: application/json' \
|
||||||
|
-d '{
|
||||||
|
"prompt": "What is AI?",
|
||||||
|
"n_predict": 32
|
||||||
|
}'
|
||||||
|
```
|
||||||
|
|
||||||
|
And you should get output like this:
|
||||||
|
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"generated_text": "What is AI? Artificial intelligence (AI) refers to the development of computer systems able to perform tasks that would normally require human intelligence, such as visual perception, speech",
|
||||||
|
"generate_time": "0.45149803161621094s"
|
||||||
|
}
|
||||||
|
|
||||||
|
```
|
||||||
|
|
||||||
|
**Important**: The first token latency is much larger than rest token latency, you could use [our benchmark tool](https://github.com/intel-analytics/ipex-llm/blob/main/python/llm/dev/benchmark/README.md) to obtain more details about first and rest token latency.
|
||||||
|
|
@ -0,0 +1,35 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
|
||||||
|
export MASTER_ADDR=127.0.0.1
|
||||||
|
export FI_PROVIDER=tcp
|
||||||
|
export CCL_ATL_TRANSPORT=ofi
|
||||||
|
export CCL_ZE_IPC_EXCHANGE=sockets
|
||||||
|
export no_proxy=localhost
|
||||||
|
|
||||||
|
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so:${LD_PRELOAD}
|
||||||
|
basekit_root=/opt/intel/oneapi
|
||||||
|
source $basekit_root/setvars.sh --force
|
||||||
|
source $basekit_root/ccl/latest/env/vars.sh --force
|
||||||
|
|
||||||
|
NUM_GPUS=2 # number of used GPU
|
||||||
|
export USE_XETLA=OFF
|
||||||
|
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=2
|
||||||
|
export TORCH_LLM_ALLREDUCE=0
|
||||||
|
|
||||||
|
mpirun -np $NUM_GPUS --prepend-rank \
|
||||||
|
python serving.py --repo-id-or-model-path YOUR_REPO_ID_OR_MODEL_PATH --low-bit 'sym_int4' --port 8000
|
||||||
|
|
||||||
149
python/llm/example/GPU/Deepspeed-AutoTP-FastAPI/serving.py
Normal file
149
python/llm/example/GPU/Deepspeed-AutoTP-FastAPI/serving.py
Normal file
|
|
@ -0,0 +1,149 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
|
||||||
|
import os
|
||||||
|
import torch
|
||||||
|
import transformers
|
||||||
|
import time
|
||||||
|
import argparse
|
||||||
|
import torch.distributed as dist
|
||||||
|
|
||||||
|
from fastapi import FastAPI, HTTPException
|
||||||
|
from pydantic import BaseModel
|
||||||
|
import uvicorn
|
||||||
|
|
||||||
|
def get_int_from_env(env_keys, default):
|
||||||
|
"""Returns the first positive env value found in the `env_keys` list or the default."""
|
||||||
|
for e in env_keys:
|
||||||
|
val = int(os.environ.get(e, -1))
|
||||||
|
if val >= 0:
|
||||||
|
return val
|
||||||
|
return int(default)
|
||||||
|
|
||||||
|
local_rank = get_int_from_env(["LOCAL_RANK","PMI_RANK"], "0")
|
||||||
|
world_size = get_int_from_env(["WORLD_SIZE","PMI_SIZE"], "1")
|
||||||
|
os.environ["RANK"] = str(local_rank)
|
||||||
|
os.environ["WORLD_SIZE"] = str(world_size)
|
||||||
|
os.environ["MASTER_PORT"] = os.environ.get("MASTER_PORT", "29500")
|
||||||
|
|
||||||
|
global model, tokenizer
|
||||||
|
|
||||||
|
def load_model(model_path, low_bit):
|
||||||
|
|
||||||
|
from ipex_llm import optimize_model
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import time
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
from transformers import AutoModelForCausalLM # export AutoModelForCausalLM from transformers so that deepspeed use it
|
||||||
|
from transformers import LlamaTokenizer, AutoTokenizer
|
||||||
|
import deepspeed
|
||||||
|
from deepspeed.accelerator.cpu_accelerator import CPU_Accelerator
|
||||||
|
from deepspeed.accelerator import set_accelerator, get_accelerator
|
||||||
|
from intel_extension_for_deepspeed import XPU_Accelerator
|
||||||
|
|
||||||
|
# First use CPU as accelerator
|
||||||
|
# Convert to deepspeed model and apply IPEX-LLM optimization on CPU to decrease GPU memory usage
|
||||||
|
current_accel = CPU_Accelerator()
|
||||||
|
set_accelerator(current_accel)
|
||||||
|
global model, tokenizer
|
||||||
|
model = AutoModelForCausalLM.from_pretrained(model_path,
|
||||||
|
device_map={"": "cpu"},
|
||||||
|
low_cpu_mem_usage=True,
|
||||||
|
torch_dtype=torch.float16,
|
||||||
|
trust_remote_code=True,
|
||||||
|
use_cache=True)
|
||||||
|
|
||||||
|
model = deepspeed.init_inference(
|
||||||
|
model,
|
||||||
|
mp_size=world_size,
|
||||||
|
dtype=torch.bfloat16,
|
||||||
|
replace_method="auto",
|
||||||
|
)
|
||||||
|
|
||||||
|
# Use IPEX-LLM `optimize_model` to convert the model into optimized low bit format
|
||||||
|
# Convert the rest of the model into float16 to reduce allreduce traffic
|
||||||
|
model = optimize_model(model.module.to(f'cpu'), low_bit=low_bit).to(torch.float16)
|
||||||
|
|
||||||
|
# Next, use XPU as accelerator to speed up inference
|
||||||
|
current_accel = XPU_Accelerator()
|
||||||
|
set_accelerator(current_accel)
|
||||||
|
|
||||||
|
# Move model back to xpu
|
||||||
|
model = model.to(f'xpu:{local_rank}')
|
||||||
|
|
||||||
|
# Modify backend related settings
|
||||||
|
if world_size > 1:
|
||||||
|
get_accelerator().set_device(local_rank)
|
||||||
|
dist_backend = get_accelerator().communication_backend_name()
|
||||||
|
import deepspeed.comm.comm
|
||||||
|
deepspeed.comm.comm.cdb = None
|
||||||
|
from deepspeed.comm.comm import init_distributed
|
||||||
|
init_distributed()
|
||||||
|
|
||||||
|
# Load tokenizer
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||||
|
|
||||||
|
def generate_text(prompt: str, n_predict: int = 32):
|
||||||
|
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(f'xpu:{local_rank}')
|
||||||
|
output = model.generate(input_ids,
|
||||||
|
max_new_tokens=n_predict,
|
||||||
|
use_cache=True)
|
||||||
|
torch.xpu.synchronize()
|
||||||
|
return output
|
||||||
|
|
||||||
|
|
||||||
|
class PromptRequest(BaseModel):
|
||||||
|
prompt: str
|
||||||
|
n_predict: int = 32
|
||||||
|
|
||||||
|
app = FastAPI()
|
||||||
|
|
||||||
|
@app.post("/generate/")
|
||||||
|
async def generate(prompt_request: PromptRequest):
|
||||||
|
if local_rank == 0:
|
||||||
|
object_list = [prompt_request]
|
||||||
|
dist.broadcast_object_list(object_list, src=0)
|
||||||
|
start_time = time.time()
|
||||||
|
output = generate_text(object_list[0].prompt, object_list[0].n_predict)
|
||||||
|
generate_time = time.time() - start_time
|
||||||
|
output = output.cpu()
|
||||||
|
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
|
||||||
|
return {"generated_text": output_str, "generate_time": f'{generate_time:.3f}s'}
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
parser = argparse.ArgumentParser(description='Predict Tokens using fastapi by leveraging DeepSpeed-AutoTP')
|
||||||
|
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf",
|
||||||
|
help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf`, `meta-llama/Llama-2-13b-chat-hf` and `meta-llama/Llama-2-70b-chat-hf`) to be downloaded'
|
||||||
|
', or the path to the huggingface checkpoint folder')
|
||||||
|
parser.add_argument('--low-bit', type=str, default='sym_int4',
|
||||||
|
help='The quantization type the model will convert to.')
|
||||||
|
parser.add_argument('--port', type=int, default=8000,
|
||||||
|
help='The port number on which the server will run.')
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
model_path = args.repo_id_or_model_path
|
||||||
|
low_bit = args.low_bit
|
||||||
|
load_model(model_path, low_bit)
|
||||||
|
if local_rank == 0:
|
||||||
|
uvicorn.run(app, host="0.0.0.0", port=args.port)
|
||||||
|
else:
|
||||||
|
while True:
|
||||||
|
object_list = [None]
|
||||||
|
dist.broadcast_object_list(object_list, src=0)
|
||||||
|
output = generate_text(object_list[0].prompt, object_list[0].n_predict)
|
||||||
|
|
||||||
|
|
@ -3,6 +3,7 @@
|
||||||
This example demonstrates how to run IPEX-LLM optimized low-bit model on multiple [Intel GPUs](../README.md) by leveraging DeepSpeed AutoTP.
|
This example demonstrates how to run IPEX-LLM optimized low-bit model on multiple [Intel GPUs](../README.md) by leveraging DeepSpeed AutoTP.
|
||||||
|
|
||||||
## Requirements
|
## Requirements
|
||||||
|
|
||||||
To run this example with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information. For this particular example, you will need at least two GPUs on your machine.
|
To run this example with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information. For this particular example, you will need at least two GPUs on your machine.
|
||||||
|
|
||||||
## Example:
|
## Example:
|
||||||
|
|
@ -25,6 +26,7 @@ conda install -c conda-forge -y gperftools=2.10 # to enable tcmalloc
|
||||||
> **Important**: IPEX 2.1.10+xpu requires Intel® oneAPI Base Toolkit's version == 2024.0. Please make sure you have installed the correct version.
|
> **Important**: IPEX 2.1.10+xpu requires Intel® oneAPI Base Toolkit's version == 2024.0. Please make sure you have installed the correct version.
|
||||||
|
|
||||||
### 2. Run tensor parallel inference on multiple GPUs
|
### 2. Run tensor parallel inference on multiple GPUs
|
||||||
|
|
||||||
Here, we separate inference process into two stages. First, convert to deepspeed model and apply ipex-llm optimization on CPU. Then, utilize XPU as DeepSpeed accelerator to inference. In this way, a *X*B model saved in 16-bit will requires approximately 0.5*X* GB total GPU memory in the whole process. For example, if you select to use two GPUs, 0.25*X* GB memory is required per GPU.
|
Here, we separate inference process into two stages. First, convert to deepspeed model and apply ipex-llm optimization on CPU. Then, utilize XPU as DeepSpeed accelerator to inference. In this way, a *X*B model saved in 16-bit will requires approximately 0.5*X* GB total GPU memory in the whole process. For example, if you select to use two GPUs, 0.25*X* GB memory is required per GPU.
|
||||||
|
|
||||||
Please select the appropriate model size based on the capabilities of your machine.
|
Please select the appropriate model size based on the capabilities of your machine.
|
||||||
|
|
@ -33,7 +35,7 @@ We provide example usages on different models and different hardwares as followi
|
||||||
|
|
||||||
- Run LLaMA2-70B on one card of Intel Data Center GPU Max 1550
|
- Run LLaMA2-70B on one card of Intel Data Center GPU Max 1550
|
||||||
|
|
||||||
```
|
```bash
|
||||||
bash run_llama2_70b_pvc_1550_1_card.sh
|
bash run_llama2_70b_pvc_1550_1_card.sh
|
||||||
```
|
```
|
||||||
|
|
||||||
|
|
@ -41,7 +43,7 @@ bash run_llama2_70b_pvc_1550_1_card.sh
|
||||||
|
|
||||||
- Run Vicuna-33B on two Intel Arc A770
|
- Run Vicuna-33B on two Intel Arc A770
|
||||||
|
|
||||||
```
|
```bash
|
||||||
bash run_vicuna_33b_arc_2_card.sh
|
bash run_vicuna_33b_arc_2_card.sh
|
||||||
```
|
```
|
||||||
|
|
||||||
|
|
@ -62,4 +64,5 @@ bash run_vicuna_33b_arc_2_card.sh
|
||||||
**Important**: The first token latency is much larger than rest token latency, you could use [our benchmark tool](https://github.com/intel-analytics/ipex-llm/blob/main/python/llm/dev/benchmark/README.md) to obtain more details about first and rest token latency.
|
**Important**: The first token latency is much larger than rest token latency, you could use [our benchmark tool](https://github.com/intel-analytics/ipex-llm/blob/main/python/llm/dev/benchmark/README.md) to obtain more details about first and rest token latency.
|
||||||
|
|
||||||
### Known Issue
|
### Known Issue
|
||||||
|
|
||||||
- In our example scripts, tcmalloc is enabled through `export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so:${LD_PRELOAD}` which speed up inference, but this may raise `munmap_chunk(): invalid pointer` error after finishing inference.
|
- In our example scripts, tcmalloc is enabled through `export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so:${LD_PRELOAD}` which speed up inference, but this may raise `munmap_chunk(): invalid pointer` error after finishing inference.
|
||||||
|
|
|
||||||
|
|
@ -7,6 +7,7 @@ This folder contains examples of running IPEX-LLM on Intel GPU:
|
||||||
- [LLM-Finetuning](LLM-Finetuning): running ***finetuning*** (such as LoRA, QLoRA, QA-LoRA, etc) using IPEX-LLM on Intel GPUs
|
- [LLM-Finetuning](LLM-Finetuning): running ***finetuning*** (such as LoRA, QLoRA, QA-LoRA, etc) using IPEX-LLM on Intel GPUs
|
||||||
- [vLLM-Serving](vLLM-Serving): running ***vLLM*** serving framework on intel GPUs (with IPEX-LLM low-bit optimized models)
|
- [vLLM-Serving](vLLM-Serving): running ***vLLM*** serving framework on intel GPUs (with IPEX-LLM low-bit optimized models)
|
||||||
- [Deepspeed-AutoTP](Deepspeed-AutoTP): running distributed inference using ***DeepSpeed AutoTP*** (with IPEX-LLM low-bit optimized models) on Intel GPUs
|
- [Deepspeed-AutoTP](Deepspeed-AutoTP): running distributed inference using ***DeepSpeed AutoTP*** (with IPEX-LLM low-bit optimized models) on Intel GPUs
|
||||||
|
- [Deepspeed-AutoTP-FastApi](Deepspeed-AutoTP-FastApi): running distributed inference using ***DeepSpeed AutoTP*** and start serving with ***FastApi***(with IPEX-LLM low-bit optimized models) on Intel GPUs
|
||||||
- [LangChain](LangChain): running ***LangChain*** applications on IPEX-LLM
|
- [LangChain](LangChain): running ***LangChain*** applications on IPEX-LLM
|
||||||
- [PyTorch-Models](PyTorch-Models): running any PyTorch model on IPEX-LLM (with "one-line code change")
|
- [PyTorch-Models](PyTorch-Models): running any PyTorch model on IPEX-LLM (with "one-line code change")
|
||||||
- [Speculative-Decoding](Speculative-Decoding): running any ***Hugging Face Transformers*** model with ***self-speculative decoding*** on Intel GPUs
|
- [Speculative-Decoding](Speculative-Decoding): running any ***Hugging Face Transformers*** model with ***self-speculative decoding*** on Intel GPUs
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue