From 599a88db531d2535521c401588209584a2da9710 Mon Sep 17 00:00:00 2001 From: ZehuaCao <47251317+Romanticoseu@users.noreply.github.com> Date: Tue, 16 Apr 2024 14:03:23 +0800 Subject: [PATCH] Add deepsped-autoTP-Fastapi serving (#10748) * add deepsped-autoTP-Fastapi serving * add readme * add license * update * update * fix --- .../GPU/Deepspeed-AutoTP-FastAPI/README.md | 84 ++++++++++ .../run_llama2_7b_chat_hf_arc_2_card.sh | 35 ++++ .../GPU/Deepspeed-AutoTP-FastAPI/serving.py | 149 ++++++++++++++++++ .../example/GPU/Deepspeed-AutoTP/README.md | 7 +- python/llm/example/GPU/README.md | 1 + 5 files changed, 274 insertions(+), 2 deletions(-) create mode 100644 python/llm/example/GPU/Deepspeed-AutoTP-FastAPI/README.md create mode 100644 python/llm/example/GPU/Deepspeed-AutoTP-FastAPI/run_llama2_7b_chat_hf_arc_2_card.sh create mode 100644 python/llm/example/GPU/Deepspeed-AutoTP-FastAPI/serving.py diff --git a/python/llm/example/GPU/Deepspeed-AutoTP-FastAPI/README.md b/python/llm/example/GPU/Deepspeed-AutoTP-FastAPI/README.md new file mode 100644 index 00000000..4903f6e7 --- /dev/null +++ b/python/llm/example/GPU/Deepspeed-AutoTP-FastAPI/README.md @@ -0,0 +1,84 @@ +# Run IPEX-LLM serving on Multiple Intel GPUs using DeepSpeed AutoTP and FastApi + +This example demonstrates how to run IPEX-LLM serving on multiple [Intel GPUs](../README.md) by leveraging DeepSpeed AutoTP. + +## Requirements + +To run this example with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information. For this particular example, you will need at least two GPUs on your machine. + +## Example + +### 1. Install + +```bash +conda create -n llm python=3.11 +conda activate llm +# below command will install intel_extension_for_pytorch==2.1.10+xpu as default +pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ +pip install oneccl_bind_pt==2.1.100 --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ +# configures OneAPI environment variables +source /opt/intel/oneapi/setvars.sh +pip install git+https://github.com/microsoft/DeepSpeed.git@ed8aed5 +pip install git+https://github.com/intel/intel-extension-for-deepspeed.git@0eb734b +pip install mpi4py fastapi uvicorn +conda install -c conda-forge -y gperftools=2.10 # to enable tcmalloc +``` + +> **Important**: IPEX 2.1.10+xpu requires IntelĀ® oneAPI Base Toolkit's version == 2024.0. Please make sure you have installed the correct version. + +### 2. Run tensor parallel inference on multiple GPUs + +When we run the model in a distributed manner across two GPUs, the memory consumption of each GPU is only half of what it was originally, and the GPUs can work simultaneously during inference computation. + +We provide example usage for `Llama-2-7b-chat-hf` model running on Arc A770 + +Run Llama-2-7b-chat-hf on two Intel Arc A770: + +```bash + +# Before run this script, you should adjust the YOUR_REPO_ID_OR_MODEL_PATH in last line +# If you want to change server port, you can set port parameter in last line +bash run_llama2_7b_chat_hf_arc_2_card.sh +``` + +If you successfully run the serving, you can get output like this: + +```bash +[0] INFO: Started server process [120071] +[0] INFO: Waiting for application startup. +[0] INFO: Application startup complete. +[0] INFO: Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to quit) +``` + +> **Note**: You could change `NUM_GPUS` to the number of GPUs you have on your machine. And you could also specify other low bit optimizations through `--low-bit`. + +### 3. Sample Input and Output + +We can use `curl` to test serving api + +```bash +# Set http_proxy and https_proxy to null to ensure that requests are not forwarded by a proxy. +export http_proxy= +export https_proxy= + +curl -X 'POST' \ + 'http://127.0.0.1:8000/generate/' \ + -H 'accept: application/json' \ + -H 'Content-Type: application/json' \ + -d '{ + "prompt": "What is AI?", + "n_predict": 32 +}' +``` + +And you should get output like this: + +```json +{ + "generated_text": "What is AI? Artificial intelligence (AI) refers to the development of computer systems able to perform tasks that would normally require human intelligence, such as visual perception, speech", + "generate_time": "0.45149803161621094s" +} + +``` + +**Important**: The first token latency is much larger than rest token latency, you could use [our benchmark tool](https://github.com/intel-analytics/ipex-llm/blob/main/python/llm/dev/benchmark/README.md) to obtain more details about first and rest token latency. diff --git a/python/llm/example/GPU/Deepspeed-AutoTP-FastAPI/run_llama2_7b_chat_hf_arc_2_card.sh b/python/llm/example/GPU/Deepspeed-AutoTP-FastAPI/run_llama2_7b_chat_hf_arc_2_card.sh new file mode 100644 index 00000000..baea6e65 --- /dev/null +++ b/python/llm/example/GPU/Deepspeed-AutoTP-FastAPI/run_llama2_7b_chat_hf_arc_2_card.sh @@ -0,0 +1,35 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +export MASTER_ADDR=127.0.0.1 +export FI_PROVIDER=tcp +export CCL_ATL_TRANSPORT=ofi +export CCL_ZE_IPC_EXCHANGE=sockets +export no_proxy=localhost + +export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so:${LD_PRELOAD} +basekit_root=/opt/intel/oneapi +source $basekit_root/setvars.sh --force +source $basekit_root/ccl/latest/env/vars.sh --force + +NUM_GPUS=2 # number of used GPU +export USE_XETLA=OFF +export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=2 +export TORCH_LLM_ALLREDUCE=0 + +mpirun -np $NUM_GPUS --prepend-rank \ + python serving.py --repo-id-or-model-path YOUR_REPO_ID_OR_MODEL_PATH --low-bit 'sym_int4' --port 8000 + diff --git a/python/llm/example/GPU/Deepspeed-AutoTP-FastAPI/serving.py b/python/llm/example/GPU/Deepspeed-AutoTP-FastAPI/serving.py new file mode 100644 index 00000000..9533473d --- /dev/null +++ b/python/llm/example/GPU/Deepspeed-AutoTP-FastAPI/serving.py @@ -0,0 +1,149 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +import os +import torch +import transformers +import time +import argparse +import torch.distributed as dist + +from fastapi import FastAPI, HTTPException +from pydantic import BaseModel +import uvicorn + +def get_int_from_env(env_keys, default): + """Returns the first positive env value found in the `env_keys` list or the default.""" + for e in env_keys: + val = int(os.environ.get(e, -1)) + if val >= 0: + return val + return int(default) + +local_rank = get_int_from_env(["LOCAL_RANK","PMI_RANK"], "0") +world_size = get_int_from_env(["WORLD_SIZE","PMI_SIZE"], "1") +os.environ["RANK"] = str(local_rank) +os.environ["WORLD_SIZE"] = str(world_size) +os.environ["MASTER_PORT"] = os.environ.get("MASTER_PORT", "29500") + +global model, tokenizer + +def load_model(model_path, low_bit): + + from ipex_llm import optimize_model + + import torch + import time + import argparse + + from transformers import AutoModelForCausalLM # export AutoModelForCausalLM from transformers so that deepspeed use it + from transformers import LlamaTokenizer, AutoTokenizer + import deepspeed + from deepspeed.accelerator.cpu_accelerator import CPU_Accelerator + from deepspeed.accelerator import set_accelerator, get_accelerator + from intel_extension_for_deepspeed import XPU_Accelerator + + # First use CPU as accelerator + # Convert to deepspeed model and apply IPEX-LLM optimization on CPU to decrease GPU memory usage + current_accel = CPU_Accelerator() + set_accelerator(current_accel) + global model, tokenizer + model = AutoModelForCausalLM.from_pretrained(model_path, + device_map={"": "cpu"}, + low_cpu_mem_usage=True, + torch_dtype=torch.float16, + trust_remote_code=True, + use_cache=True) + + model = deepspeed.init_inference( + model, + mp_size=world_size, + dtype=torch.bfloat16, + replace_method="auto", + ) + + # Use IPEX-LLM `optimize_model` to convert the model into optimized low bit format + # Convert the rest of the model into float16 to reduce allreduce traffic + model = optimize_model(model.module.to(f'cpu'), low_bit=low_bit).to(torch.float16) + + # Next, use XPU as accelerator to speed up inference + current_accel = XPU_Accelerator() + set_accelerator(current_accel) + + # Move model back to xpu + model = model.to(f'xpu:{local_rank}') + + # Modify backend related settings + if world_size > 1: + get_accelerator().set_device(local_rank) + dist_backend = get_accelerator().communication_backend_name() + import deepspeed.comm.comm + deepspeed.comm.comm.cdb = None + from deepspeed.comm.comm import init_distributed + init_distributed() + + # Load tokenizer + tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) + +def generate_text(prompt: str, n_predict: int = 32): + input_ids = tokenizer.encode(prompt, return_tensors="pt").to(f'xpu:{local_rank}') + output = model.generate(input_ids, + max_new_tokens=n_predict, + use_cache=True) + torch.xpu.synchronize() + return output + + +class PromptRequest(BaseModel): + prompt: str + n_predict: int = 32 + +app = FastAPI() + +@app.post("/generate/") +async def generate(prompt_request: PromptRequest): + if local_rank == 0: + object_list = [prompt_request] + dist.broadcast_object_list(object_list, src=0) + start_time = time.time() + output = generate_text(object_list[0].prompt, object_list[0].n_predict) + generate_time = time.time() - start_time + output = output.cpu() + output_str = tokenizer.decode(output[0], skip_special_tokens=True) + return {"generated_text": output_str, "generate_time": f'{generate_time:.3f}s'} + +if __name__ == "__main__": + parser = argparse.ArgumentParser(description='Predict Tokens using fastapi by leveraging DeepSpeed-AutoTP') + parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf", + help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf`, `meta-llama/Llama-2-13b-chat-hf` and `meta-llama/Llama-2-70b-chat-hf`) to be downloaded' + ', or the path to the huggingface checkpoint folder') + parser.add_argument('--low-bit', type=str, default='sym_int4', + help='The quantization type the model will convert to.') + parser.add_argument('--port', type=int, default=8000, + help='The port number on which the server will run.') + + args = parser.parse_args() + model_path = args.repo_id_or_model_path + low_bit = args.low_bit + load_model(model_path, low_bit) + if local_rank == 0: + uvicorn.run(app, host="0.0.0.0", port=args.port) + else: + while True: + object_list = [None] + dist.broadcast_object_list(object_list, src=0) + output = generate_text(object_list[0].prompt, object_list[0].n_predict) + diff --git a/python/llm/example/GPU/Deepspeed-AutoTP/README.md b/python/llm/example/GPU/Deepspeed-AutoTP/README.md index aa408d4e..06e07208 100644 --- a/python/llm/example/GPU/Deepspeed-AutoTP/README.md +++ b/python/llm/example/GPU/Deepspeed-AutoTP/README.md @@ -3,6 +3,7 @@ This example demonstrates how to run IPEX-LLM optimized low-bit model on multiple [Intel GPUs](../README.md) by leveraging DeepSpeed AutoTP. ## Requirements + To run this example with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information. For this particular example, you will need at least two GPUs on your machine. ## Example: @@ -25,6 +26,7 @@ conda install -c conda-forge -y gperftools=2.10 # to enable tcmalloc > **Important**: IPEX 2.1.10+xpu requires IntelĀ® oneAPI Base Toolkit's version == 2024.0. Please make sure you have installed the correct version. ### 2. Run tensor parallel inference on multiple GPUs + Here, we separate inference process into two stages. First, convert to deepspeed model and apply ipex-llm optimization on CPU. Then, utilize XPU as DeepSpeed accelerator to inference. In this way, a *X*B model saved in 16-bit will requires approximately 0.5*X* GB total GPU memory in the whole process. For example, if you select to use two GPUs, 0.25*X* GB memory is required per GPU. Please select the appropriate model size based on the capabilities of your machine. @@ -33,7 +35,7 @@ We provide example usages on different models and different hardwares as followi - Run LLaMA2-70B on one card of Intel Data Center GPU Max 1550 -``` +```bash bash run_llama2_70b_pvc_1550_1_card.sh ``` @@ -41,7 +43,7 @@ bash run_llama2_70b_pvc_1550_1_card.sh - Run Vicuna-33B on two Intel Arc A770 -``` +```bash bash run_vicuna_33b_arc_2_card.sh ``` @@ -62,4 +64,5 @@ bash run_vicuna_33b_arc_2_card.sh **Important**: The first token latency is much larger than rest token latency, you could use [our benchmark tool](https://github.com/intel-analytics/ipex-llm/blob/main/python/llm/dev/benchmark/README.md) to obtain more details about first and rest token latency. ### Known Issue + - In our example scripts, tcmalloc is enabled through `export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so:${LD_PRELOAD}` which speed up inference, but this may raise `munmap_chunk(): invalid pointer` error after finishing inference. diff --git a/python/llm/example/GPU/README.md b/python/llm/example/GPU/README.md index cee5b2fd..dcda29af 100644 --- a/python/llm/example/GPU/README.md +++ b/python/llm/example/GPU/README.md @@ -7,6 +7,7 @@ This folder contains examples of running IPEX-LLM on Intel GPU: - [LLM-Finetuning](LLM-Finetuning): running ***finetuning*** (such as LoRA, QLoRA, QA-LoRA, etc) using IPEX-LLM on Intel GPUs - [vLLM-Serving](vLLM-Serving): running ***vLLM*** serving framework on intel GPUs (with IPEX-LLM low-bit optimized models) - [Deepspeed-AutoTP](Deepspeed-AutoTP): running distributed inference using ***DeepSpeed AutoTP*** (with IPEX-LLM low-bit optimized models) on Intel GPUs +- [Deepspeed-AutoTP-FastApi](Deepspeed-AutoTP-FastApi): running distributed inference using ***DeepSpeed AutoTP*** and start serving with ***FastApi***(with IPEX-LLM low-bit optimized models) on Intel GPUs - [LangChain](LangChain): running ***LangChain*** applications on IPEX-LLM - [PyTorch-Models](PyTorch-Models): running any PyTorch model on IPEX-LLM (with "one-line code change") - [Speculative-Decoding](Speculative-Decoding): running any ***Hugging Face Transformers*** model with ***self-speculative decoding*** on Intel GPUs