LLM: update chatglm example to be more friendly for beginners (#8795)
This commit is contained in:
parent
7c37424a63
commit
5582872744
2 changed files with 16 additions and 31 deletions
|
|
@ -4,7 +4,7 @@ In this directory, you will find examples on how you could apply BigDL-LLM INT4
|
||||||
|
|
||||||
> **Note**: If you want to download the Hugging Face *Transformers* model, please refer to [here](https://huggingface.co/docs/hub/models-downloading#using-git).
|
> **Note**: If you want to download the Hugging Face *Transformers* model, please refer to [here](https://huggingface.co/docs/hub/models-downloading#using-git).
|
||||||
>
|
>
|
||||||
> BigDL-LLM optimizes the *Transformers* model in INT4 precision at runtime, so that no explicit conversion is needed.
|
> BigDL-LLM optimizes the *Transformers* model in INT4 precision at runtime, and thus no explicit conversion is needed.
|
||||||
|
|
||||||
## Requirements
|
## Requirements
|
||||||
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
|
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
|
||||||
|
|
@ -19,30 +19,22 @@ After installing conda, create a Python environment for BigDL-LLM:
|
||||||
conda create -n llm python=3.9 # recommend to use Python 3.9
|
conda create -n llm python=3.9 # recommend to use Python 3.9
|
||||||
conda activate llm
|
conda activate llm
|
||||||
|
|
||||||
pip install bigdl-llm[all] # install bigdl-llm with 'all' option
|
pip install --pre --upgrade bigdl-llm[all] # install the latest bigdl-llm nightly build with 'all' option
|
||||||
```
|
```
|
||||||
|
|
||||||
### 2. Run
|
### 2. Run
|
||||||
```
|
After setting up the Python environment, you could run the example by following steps.
|
||||||
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
|
|
||||||
```
|
|
||||||
|
|
||||||
Arguments info:
|
|
||||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the ChatGLM model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'THUDM/chatglm-6b'`.
|
|
||||||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么?'`.
|
|
||||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
|
|
||||||
|
|
||||||
The expected output can be found in [Sample Output](#23-sample-output) section.
|
|
||||||
|
|
||||||
> **Note**: When loading the model in 4-bit, BigDL-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference.
|
> **Note**: When loading the model in 4-bit, BigDL-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference.
|
||||||
>
|
>
|
||||||
> Please select the appropriate size of the ChatGLM model based on the capabilities of your machine.
|
> Please select the appropriate size of the ChatGLM model based on the capabilities of your machine.
|
||||||
|
|
||||||
#### 2.1 Client
|
#### 2.1 Client
|
||||||
On client Windows machine, it is recommended to run directly with full utilization of all cores:
|
On client Windows machines, it is recommended to run directly with full utilization of all cores:
|
||||||
```powershell
|
```powershell
|
||||||
python ./generate.py
|
python ./generate.py --prompt 'AI是什么?'
|
||||||
```
|
```
|
||||||
|
More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
|
||||||
|
|
||||||
#### 2.2 Server
|
#### 2.2 Server
|
||||||
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
|
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
|
||||||
|
|
@ -54,27 +46,22 @@ source bigdl-nano-init
|
||||||
|
|
||||||
# e.g. for a server with 48 cores per socket
|
# e.g. for a server with 48 cores per socket
|
||||||
export OMP_NUM_THREADS=48
|
export OMP_NUM_THREADS=48
|
||||||
numactl -C 0-47 -m 0 python ./generate.py
|
numactl -C 0-47 -m 0 python ./generate.py --prompt 'AI是什么?'
|
||||||
```
|
```
|
||||||
|
More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
|
||||||
|
|
||||||
#### 2.3 Sample Output
|
#### 2.3 Arguments Info
|
||||||
|
In the example, several arguments can be passed to satisfy your requirements:
|
||||||
|
|
||||||
|
- `--repo-id-or-model-path`: str, argument defining the huggingface repo id for the ChatGLM model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'THUDM/chatglm-6b'`.
|
||||||
|
- `--prompt`: str, argument defining the prompt to be inferred (with integrated prompt format for chat). It is default to be `'AI是什么?'`.
|
||||||
|
- `--n-predict`: int, argument defining the max number of tokens to predict. It is default to be `32`.
|
||||||
|
|
||||||
|
#### 2.4 Sample Output
|
||||||
#### [THUDM/chatglm-6b](https://huggingface.co/THUDM/chatglm-6b)
|
#### [THUDM/chatglm-6b](https://huggingface.co/THUDM/chatglm-6b)
|
||||||
```log
|
```log
|
||||||
Inference time: xxxx s
|
Inference time: xxxx s
|
||||||
-------------------- Prompt --------------------
|
|
||||||
问:AI是什么?
|
|
||||||
答:
|
|
||||||
-------------------- Output --------------------
|
-------------------- Output --------------------
|
||||||
问:AI是什么?
|
问:AI是什么?
|
||||||
答: AI是人工智能(Artificial Intelligence)的缩写,指的是一种能够模拟人类智能的技术或系统。AI系统可以通过学习、推理、解决问题等方式,实现类似于
|
答: AI是人工智能(Artificial Intelligence)的缩写,指的是一种能够模拟人类智能的技术或系统。AI系统可以通过学习、推理、解决问题等方式,实现类似于
|
||||||
```
|
```
|
||||||
|
|
||||||
```log
|
|
||||||
Inference time: xxxx s
|
|
||||||
-------------------- Prompt --------------------
|
|
||||||
问:What is AI?
|
|
||||||
答:
|
|
||||||
-------------------- Output --------------------
|
|
||||||
问:What is AI?
|
|
||||||
答: AI stands for "Artificial Intelligence." AI refers to the development of computer systems that can perform tasks that typically require human intelligence, such as recognizing speech, understanding natural
|
|
||||||
```
|
|
||||||
|
|
|
||||||
|
|
@ -63,7 +63,5 @@ if __name__ == '__main__':
|
||||||
end = time.time()
|
end = time.time()
|
||||||
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
|
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
|
||||||
print(f'Inference time: {end-st} s')
|
print(f'Inference time: {end-st} s')
|
||||||
print('-'*20, 'Prompt', '-'*20)
|
|
||||||
print(prompt)
|
|
||||||
print('-'*20, 'Output', '-'*20)
|
print('-'*20, 'Output', '-'*20)
|
||||||
print(output_str)
|
print(output_str)
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue