diff --git a/python/llm/example/transformers/transformers_int4/chatglm/README.md b/python/llm/example/transformers/transformers_int4/chatglm/README.md index e15f24b0..861ee12a 100644 --- a/python/llm/example/transformers/transformers_int4/chatglm/README.md +++ b/python/llm/example/transformers/transformers_int4/chatglm/README.md @@ -4,7 +4,7 @@ In this directory, you will find examples on how you could apply BigDL-LLM INT4 > **Note**: If you want to download the Hugging Face *Transformers* model, please refer to [here](https://huggingface.co/docs/hub/models-downloading#using-git). > -> BigDL-LLM optimizes the *Transformers* model in INT4 precision at runtime, so that no explicit conversion is needed. +> BigDL-LLM optimizes the *Transformers* model in INT4 precision at runtime, and thus no explicit conversion is needed. ## Requirements To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information. @@ -19,30 +19,22 @@ After installing conda, create a Python environment for BigDL-LLM: conda create -n llm python=3.9 # recommend to use Python 3.9 conda activate llm -pip install bigdl-llm[all] # install bigdl-llm with 'all' option +pip install --pre --upgrade bigdl-llm[all] # install the latest bigdl-llm nightly build with 'all' option ``` ### 2. Run -``` -python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT -``` - -Arguments info: -- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the ChatGLM model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'THUDM/chatglm-6b'`. -- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么?'`. -- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. - -The expected output can be found in [Sample Output](#23-sample-output) section. +After setting up the Python environment, you could run the example by following steps. > **Note**: When loading the model in 4-bit, BigDL-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference. > > Please select the appropriate size of the ChatGLM model based on the capabilities of your machine. #### 2.1 Client -On client Windows machine, it is recommended to run directly with full utilization of all cores: +On client Windows machines, it is recommended to run directly with full utilization of all cores: ```powershell -python ./generate.py +python ./generate.py --prompt 'AI是什么?' ``` +More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section. #### 2.2 Server For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket. @@ -54,27 +46,22 @@ source bigdl-nano-init # e.g. for a server with 48 cores per socket export OMP_NUM_THREADS=48 -numactl -C 0-47 -m 0 python ./generate.py +numactl -C 0-47 -m 0 python ./generate.py --prompt 'AI是什么?' ``` +More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section. -#### 2.3 Sample Output +#### 2.3 Arguments Info +In the example, several arguments can be passed to satisfy your requirements: + +- `--repo-id-or-model-path`: str, argument defining the huggingface repo id for the ChatGLM model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'THUDM/chatglm-6b'`. +- `--prompt`: str, argument defining the prompt to be inferred (with integrated prompt format for chat). It is default to be `'AI是什么?'`. +- `--n-predict`: int, argument defining the max number of tokens to predict. It is default to be `32`. + +#### 2.4 Sample Output #### [THUDM/chatglm-6b](https://huggingface.co/THUDM/chatglm-6b) ```log Inference time: xxxx s --------------------- Prompt -------------------- -问:AI是什么? -答: -------------------- Output -------------------- 问:AI是什么? 答: AI是人工智能(Artificial Intelligence)的缩写,指的是一种能够模拟人类智能的技术或系统。AI系统可以通过学习、推理、解决问题等方式,实现类似于 ``` - -```log -Inference time: xxxx s --------------------- Prompt -------------------- -问:What is AI? -答: --------------------- Output -------------------- -问:What is AI? -答: AI stands for "Artificial Intelligence." AI refers to the development of computer systems that can perform tasks that typically require human intelligence, such as recognizing speech, understanding natural -``` diff --git a/python/llm/example/transformers/transformers_int4/chatglm/generate.py b/python/llm/example/transformers/transformers_int4/chatglm/generate.py index 7a5e604d..b5f5ab6e 100644 --- a/python/llm/example/transformers/transformers_int4/chatglm/generate.py +++ b/python/llm/example/transformers/transformers_int4/chatglm/generate.py @@ -63,7 +63,5 @@ if __name__ == '__main__': end = time.time() output_str = tokenizer.decode(output[0], skip_special_tokens=True) print(f'Inference time: {end-st} s') - print('-'*20, 'Prompt', '-'*20) - print(prompt) print('-'*20, 'Output', '-'*20) print(output_str)