Fix NPU load error message and add minicpm npu lowbit feat (#12064)
* fix npu_model raise sym_int4 error * add load_lowbit * remove print&perf
This commit is contained in:
		
							parent
							
								
									32e8362da7
								
							
						
					
					
						commit
						4ca330da15
					
				
					 2 changed files with 37 additions and 16 deletions
				
			
		| 
						 | 
				
			
			@ -37,6 +37,12 @@ if __name__ == "__main__":
 | 
			
		|||
        help="The huggingface repo id for the Llama2 model to be downloaded"
 | 
			
		||||
        ", or the path to the huggingface checkpoint folder",
 | 
			
		||||
    )
 | 
			
		||||
    parser.add_argument("--lowbit-path", type=str,
 | 
			
		||||
        default="",
 | 
			
		||||
        help="The path to the lowbit model folder, leave blank if you do not want to save. \
 | 
			
		||||
            If path not exists, lowbit model will be saved there. \
 | 
			
		||||
            Else, lowbit model will be loaded.",
 | 
			
		||||
    )
 | 
			
		||||
    parser.add_argument('--prompt', type=str, default="What is AI?",
 | 
			
		||||
                        help='Prompt to infer')
 | 
			
		||||
    parser.add_argument("--n-predict", type=int, default=32, help="Max tokens to predict")
 | 
			
		||||
| 
						 | 
				
			
			@ -48,23 +54,38 @@ if __name__ == "__main__":
 | 
			
		|||
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
    model_path = args.repo_id_or_model_path
 | 
			
		||||
 | 
			
		||||
    model = AutoModelForCausalLM.from_pretrained(
 | 
			
		||||
        model_path,
 | 
			
		||||
        torch_dtype=torch.float16,
 | 
			
		||||
        trust_remote_code=True,
 | 
			
		||||
        attn_implementation="eager",
 | 
			
		||||
        load_in_low_bit="sym_int4",
 | 
			
		||||
        optimize_model=True,
 | 
			
		||||
        max_output_len=args.max_output_len,
 | 
			
		||||
        max_prompt_len=args.max_prompt_len,
 | 
			
		||||
        intra_pp=args.intra_pp,
 | 
			
		||||
        inter_pp=args.inter_pp,
 | 
			
		||||
        transpose_value_cache=not args.disable_transpose_value_cache,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    if not args.lowbit_path or not os.path.exists(args.lowbit_path):
 | 
			
		||||
        model = AutoModelForCausalLM.from_pretrained(
 | 
			
		||||
            model_path,
 | 
			
		||||
            torch_dtype=torch.float16,
 | 
			
		||||
            trust_remote_code=True,
 | 
			
		||||
            attn_implementation="eager",
 | 
			
		||||
            load_in_low_bit="sym_int4",
 | 
			
		||||
            optimize_model=True,
 | 
			
		||||
            max_output_len=args.max_output_len,
 | 
			
		||||
            max_prompt_len=args.max_prompt_len,
 | 
			
		||||
            intra_pp=args.intra_pp,
 | 
			
		||||
            inter_pp=args.inter_pp,
 | 
			
		||||
            transpose_value_cache=not args.disable_transpose_value_cache,
 | 
			
		||||
        )
 | 
			
		||||
    else:
 | 
			
		||||
        model = AutoModelForCausalLM.load_low_bit(
 | 
			
		||||
            args.lowbit_path,
 | 
			
		||||
            attn_implementation="eager",
 | 
			
		||||
            torch_dtype=torch.float16,
 | 
			
		||||
            optimize_model=True,
 | 
			
		||||
            max_output_len=args.max_output_len,
 | 
			
		||||
            max_prompt_len=args.max_prompt_len,
 | 
			
		||||
            intra_pp=args.intra_pp,
 | 
			
		||||
            inter_pp=args.inter_pp,
 | 
			
		||||
            transpose_value_cache=not args.disable_transpose_value_cache,
 | 
			
		||||
            trust_remote_code=True,
 | 
			
		||||
        )
 | 
			
		||||
    tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
 | 
			
		||||
    if args.lowbit_path and not os.path.exists(args.lowbit_path):
 | 
			
		||||
        model.save_low_bit(args.lowbit_path)
 | 
			
		||||
 | 
			
		||||
    print("-" * 80)
 | 
			
		||||
    print("done")
 | 
			
		||||
    with torch.inference_mode():
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -270,7 +270,7 @@ class _BaseAutoModelClass:
 | 
			
		|||
        invalidInputError(
 | 
			
		||||
            qtype in ["sym_int8_rtn", "sym_int4_rtn"],
 | 
			
		||||
            f"Unknown bigdl_transformers_low_bit value: {qtype},"
 | 
			
		||||
            f" expected: sym_int4, asym_int4, sym_int5, asym_int5 or sym_int8.",
 | 
			
		||||
            f" expected: sym_int8_rtn, sym_int4_rtn. "
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        has_remote_code = hasattr(config, "auto_map") and cls.HF_Model.__name__ in config.auto_map
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue