added minicpm cpu examples (#12027)

* minicpm cpu examples

* add link for minicpm-2
This commit is contained in:
Jinhe 2024-09-11 15:51:21 +08:00 committed by GitHub
parent a0c73c26d8
commit 32e8362da7
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
4 changed files with 205 additions and 2 deletions

View file

@ -317,7 +317,7 @@ Over 50 models have been optimized/verified on `ipex-llm`, including *LLaMA/LLaM
| CodeGeeX2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/codegeex2) | [link](python/llm/example/GPU/HuggingFace/LLM/codegeex2) |
| MiniCPM | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/minicpm) | [link](python/llm/example/GPU/HuggingFace/LLM/minicpm) |
| MiniCPM-V | | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V) |
| MiniCPM-V-2 | | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V-2) |
| MiniCPM-V-2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/minicpm-v-2) | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V-2) |
| MiniCPM-Llama3-V-2_5 | | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-Llama3-V-2_5) |
| MiniCPM-V-2_6 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/minicpm-v-2_6) | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V-2_6) |

View file

@ -0,0 +1,101 @@
# MiniCPM-V-2
In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on MiniCPM-V-2 models. For illustration purposes, we utilize the [openbmb/MiniCPM-V-2](https://huggingface.co/openbmb/MiniCPM-V-2) as a reference MiniCPM-V-2 model.
## 0. Requirements
To run these examples with IPEX-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
## Example: Predict Tokens using `chat()` API
In the example [chat.py](./chat.py), we show a basic use case for a MiniCPM-V-2 model to predict the next N tokens using `chat()` API, with IPEX-LLM INT4 optimizations.
### 1. Install
We suggest using conda to manage environment:
On Linux:
```bash
conda create -n llm python=3.11
conda activate llm
# install ipex-llm with 'all' option
pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu
pip install torchvision==0.16.2 --index-url https://download.pytorch.org/whl/cpu
pip install peft timm
```
On Windows:
```cmd
conda create -n llm python=3.11
conda activate llm
pip install --pre --upgrade ipex-llm[all]
pip install torchvision==0.16.2 --index-url https://download.pytorch.org/whl/cpu
pip install peft timm
```
### 2. Run
- chat without streaming mode:
```
python ./chat.py --prompt 'What is in the image?'
```
- chat in streaming mode:
```
python ./chat.py --prompt 'What is in the image?' --stream
```
> [!TIP]
> For chatting in streaming mode, it is recommended to set the environment variable `PYTHONUNBUFFERED=1`.
Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the MiniCPM-V-2 model (e.g. `openbmb/MiniCPM-V-2`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'openbmb/MiniCPM-V-2'`.
- `--image-url-or-path IMAGE_URL_OR_PATH`: argument defining the image to be infered. It is default to be `'http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is in the image?'`.
- `--stream`: flag to chat in streaming mode
> **Note**: When loading the model in 4-bit, IPEX-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference.
>
> Please select the appropriate size of the MiniCPM model based on the capabilities of your machine.
#### 2.1 Client
On client Windows machine, it is recommended to run directly with full utilization of all cores:
```cmd
python ./chat.py
```
#### 2.2 Server
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
E.g. on Linux,
```bash
# set IPEX-LLM env variables
source ipex-llm-init
# e.g. for a server with 48 cores per socket
export OMP_NUM_THREADS=48
numactl -C 0-47 -m 0 python ./chat.py
```
#### 2.3 Sample Output
#### [openbmb/MiniCPM-V-2](https://huggingface.co/openbmb/MiniCPM-V-2)
```log
Inference time: xxxx s
-------------------- Input Image --------------------
http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg
-------------------- Input Prompt --------------------
What is in the image?
-------------------- Chat Output --------------------
The image features a young child holding a white teddy bear dressed in pink. The background includes some red flowers and what appears to be a stone wall.
```
```log
-------------------- Input Image --------------------
http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg
-------------------- Input Prompt --------------------
图片里有什么?
-------------------- Stream Chat Output --------------------
图片中有一个小女孩,她手里拿着一个穿着粉色裙子的白色小熊玩偶。背景中有红色花朵和石头结构,可能是一个花园或庭院。
```
The sample input image is (which is fetched from [COCO dataset](https://cocodataset.org/#explore?id=264959)):
<a href="http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg"><img width=400px src="http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg" ></a>

View file

@ -0,0 +1,102 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import time
import argparse
import requests
import torch
from PIL import Image
from ipex_llm.transformers import AutoModel
from transformers import AutoTokenizer
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `chat()` API for MiniCPM-V-2_6 model')
parser.add_argument('--repo-id-or-model-path', type=str, default="openbmb/MiniCPM-V-2_6",
help='The huggingface repo id for the MiniCPM-V-2_6 model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--image-url-or-path', type=str,
default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg',
help='The URL or path to the image to infer')
parser.add_argument('--prompt', type=str, default="What is in the image?",
help='Prompt to infer')
parser.add_argument('--stream', action='store_true',
help='Whether to chat in streaming mode')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
image_path = args.image_url_or_path
# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
model = AutoModel.from_pretrained(model_path,
load_in_low_bit="asym_int4",
optimize_model=True,
trust_remote_code=True,
use_cache=True,
torch_dtype=torch.float32,
modules_to_not_convert=["vpm", "resampler"])
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)
model.eval()
query = args.prompt
if os.path.exists(image_path):
image = Image.open(image_path).convert('RGB')
else:
image = Image.open(requests.get(image_path, stream=True).raw).convert('RGB')
# Generate predicted tokens
# here the prompt tuning refers to https://huggingface.co/openbmb/MiniCPM-V-2_6/blob/main/README.md
msgs = [{'role': 'user', 'content': args.prompt}]
if args.stream:
res, context, _ = model.chat(
image=image,
msgs=msgs,
context= None,
tokenizer=tokenizer,
stream=True
)
print('-'*20, 'Input Image', '-'*20)
print(image_path)
print('-'*20, 'Input Prompt', '-'*20)
print(args.prompt)
print('-'*20, 'Stream Chat Output', '-'*20)
for new_text in res:
print(new_text, flush=True, end='')
else:
st = time.time()
res, context, _ = model.chat(
image=image,
msgs=msgs,
context=None,
tokenizer=tokenizer,
)
end = time.time()
print(f'Inference time: {end-st} s')
print('-'*20, 'Input Image', '-'*20)
print(image_path)
print('-'*20, 'Input Prompt', '-'*20)
print(args.prompt)
print('-'*20, 'Chat Output', '-'*20)
print(res)

View file

@ -28,7 +28,7 @@ conda activate llm
pip install --pre --upgrade ipex-llm[all]
pip install torchvision==0.16.2 --index-url https://download.pytorch.org/whl/cpu
pip install transformers==4.40.0 trl
pip install transformers==4.41.0 trl
```
### 2. Run