added minicpm cpu examples (#12027)
* minicpm cpu examples * add link for minicpm-2
This commit is contained in:
parent
a0c73c26d8
commit
32e8362da7
4 changed files with 205 additions and 2 deletions
|
|
@ -317,7 +317,7 @@ Over 50 models have been optimized/verified on `ipex-llm`, including *LLaMA/LLaM
|
|||
| CodeGeeX2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/codegeex2) | [link](python/llm/example/GPU/HuggingFace/LLM/codegeex2) |
|
||||
| MiniCPM | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/minicpm) | [link](python/llm/example/GPU/HuggingFace/LLM/minicpm) |
|
||||
| MiniCPM-V | | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V) |
|
||||
| MiniCPM-V-2 | | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V-2) |
|
||||
| MiniCPM-V-2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/minicpm-v-2) | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V-2) |
|
||||
| MiniCPM-Llama3-V-2_5 | | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-Llama3-V-2_5) |
|
||||
| MiniCPM-V-2_6 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/minicpm-v-2_6) | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V-2_6) |
|
||||
|
||||
|
|
|
|||
|
|
@ -0,0 +1,101 @@
|
|||
# MiniCPM-V-2
|
||||
In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on MiniCPM-V-2 models. For illustration purposes, we utilize the [openbmb/MiniCPM-V-2](https://huggingface.co/openbmb/MiniCPM-V-2) as a reference MiniCPM-V-2 model.
|
||||
|
||||
## 0. Requirements
|
||||
To run these examples with IPEX-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
|
||||
|
||||
## Example: Predict Tokens using `chat()` API
|
||||
In the example [chat.py](./chat.py), we show a basic use case for a MiniCPM-V-2 model to predict the next N tokens using `chat()` API, with IPEX-LLM INT4 optimizations.
|
||||
### 1. Install
|
||||
We suggest using conda to manage environment:
|
||||
|
||||
On Linux:
|
||||
|
||||
```bash
|
||||
conda create -n llm python=3.11
|
||||
conda activate llm
|
||||
|
||||
# install ipex-llm with 'all' option
|
||||
pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
pip install torchvision==0.16.2 --index-url https://download.pytorch.org/whl/cpu
|
||||
pip install peft timm
|
||||
```
|
||||
On Windows:
|
||||
|
||||
```cmd
|
||||
conda create -n llm python=3.11
|
||||
conda activate llm
|
||||
|
||||
pip install --pre --upgrade ipex-llm[all]
|
||||
pip install torchvision==0.16.2 --index-url https://download.pytorch.org/whl/cpu
|
||||
pip install peft timm
|
||||
```
|
||||
|
||||
### 2. Run
|
||||
|
||||
- chat without streaming mode:
|
||||
```
|
||||
python ./chat.py --prompt 'What is in the image?'
|
||||
```
|
||||
- chat in streaming mode:
|
||||
```
|
||||
python ./chat.py --prompt 'What is in the image?' --stream
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> For chatting in streaming mode, it is recommended to set the environment variable `PYTHONUNBUFFERED=1`.
|
||||
|
||||
|
||||
Arguments info:
|
||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the MiniCPM-V-2 model (e.g. `openbmb/MiniCPM-V-2`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'openbmb/MiniCPM-V-2'`.
|
||||
- `--image-url-or-path IMAGE_URL_OR_PATH`: argument defining the image to be infered. It is default to be `'http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg'`.
|
||||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is in the image?'`.
|
||||
- `--stream`: flag to chat in streaming mode
|
||||
|
||||
> **Note**: When loading the model in 4-bit, IPEX-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference.
|
||||
>
|
||||
> Please select the appropriate size of the MiniCPM model based on the capabilities of your machine.
|
||||
|
||||
#### 2.1 Client
|
||||
On client Windows machine, it is recommended to run directly with full utilization of all cores:
|
||||
```cmd
|
||||
python ./chat.py
|
||||
```
|
||||
|
||||
#### 2.2 Server
|
||||
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
|
||||
|
||||
E.g. on Linux,
|
||||
```bash
|
||||
# set IPEX-LLM env variables
|
||||
source ipex-llm-init
|
||||
|
||||
# e.g. for a server with 48 cores per socket
|
||||
export OMP_NUM_THREADS=48
|
||||
numactl -C 0-47 -m 0 python ./chat.py
|
||||
```
|
||||
|
||||
#### 2.3 Sample Output
|
||||
#### [openbmb/MiniCPM-V-2](https://huggingface.co/openbmb/MiniCPM-V-2)
|
||||
```log
|
||||
Inference time: xxxx s
|
||||
-------------------- Input Image --------------------
|
||||
http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg
|
||||
-------------------- Input Prompt --------------------
|
||||
What is in the image?
|
||||
-------------------- Chat Output --------------------
|
||||
The image features a young child holding a white teddy bear dressed in pink. The background includes some red flowers and what appears to be a stone wall.
|
||||
```
|
||||
|
||||
```log
|
||||
-------------------- Input Image --------------------
|
||||
http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg
|
||||
-------------------- Input Prompt --------------------
|
||||
图片里有什么?
|
||||
-------------------- Stream Chat Output --------------------
|
||||
图片中有一个小女孩,她手里拿着一个穿着粉色裙子的白色小熊玩偶。背景中有红色花朵和石头结构,可能是一个花园或庭院。
|
||||
```
|
||||
|
||||
The sample input image is (which is fetched from [COCO dataset](https://cocodataset.org/#explore?id=264959)):
|
||||
|
||||
<a href="http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg"><img width=400px src="http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg" ></a>
|
||||
|
|
@ -0,0 +1,102 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
|
||||
import os
|
||||
import time
|
||||
import argparse
|
||||
import requests
|
||||
import torch
|
||||
from PIL import Image
|
||||
from ipex_llm.transformers import AutoModel
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='Predict Tokens using `chat()` API for MiniCPM-V-2_6 model')
|
||||
parser.add_argument('--repo-id-or-model-path', type=str, default="openbmb/MiniCPM-V-2_6",
|
||||
help='The huggingface repo id for the MiniCPM-V-2_6 model to be downloaded'
|
||||
', or the path to the huggingface checkpoint folder')
|
||||
parser.add_argument('--image-url-or-path', type=str,
|
||||
default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg',
|
||||
help='The URL or path to the image to infer')
|
||||
parser.add_argument('--prompt', type=str, default="What is in the image?",
|
||||
help='Prompt to infer')
|
||||
parser.add_argument('--stream', action='store_true',
|
||||
help='Whether to chat in streaming mode')
|
||||
|
||||
args = parser.parse_args()
|
||||
model_path = args.repo_id_or_model_path
|
||||
image_path = args.image_url_or_path
|
||||
|
||||
# Load model in 4 bit,
|
||||
# which convert the relevant layers in the model into INT4 format
|
||||
model = AutoModel.from_pretrained(model_path,
|
||||
load_in_low_bit="asym_int4",
|
||||
optimize_model=True,
|
||||
trust_remote_code=True,
|
||||
use_cache=True,
|
||||
torch_dtype=torch.float32,
|
||||
modules_to_not_convert=["vpm", "resampler"])
|
||||
|
||||
# Load tokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path,
|
||||
trust_remote_code=True)
|
||||
model.eval()
|
||||
|
||||
query = args.prompt
|
||||
if os.path.exists(image_path):
|
||||
image = Image.open(image_path).convert('RGB')
|
||||
else:
|
||||
image = Image.open(requests.get(image_path, stream=True).raw).convert('RGB')
|
||||
|
||||
# Generate predicted tokens
|
||||
# here the prompt tuning refers to https://huggingface.co/openbmb/MiniCPM-V-2_6/blob/main/README.md
|
||||
msgs = [{'role': 'user', 'content': args.prompt}]
|
||||
|
||||
if args.stream:
|
||||
res, context, _ = model.chat(
|
||||
image=image,
|
||||
msgs=msgs,
|
||||
context= None,
|
||||
tokenizer=tokenizer,
|
||||
stream=True
|
||||
)
|
||||
|
||||
print('-'*20, 'Input Image', '-'*20)
|
||||
print(image_path)
|
||||
print('-'*20, 'Input Prompt', '-'*20)
|
||||
print(args.prompt)
|
||||
print('-'*20, 'Stream Chat Output', '-'*20)
|
||||
for new_text in res:
|
||||
print(new_text, flush=True, end='')
|
||||
else:
|
||||
st = time.time()
|
||||
res, context, _ = model.chat(
|
||||
image=image,
|
||||
msgs=msgs,
|
||||
context=None,
|
||||
tokenizer=tokenizer,
|
||||
)
|
||||
end = time.time()
|
||||
|
||||
print(f'Inference time: {end-st} s')
|
||||
print('-'*20, 'Input Image', '-'*20)
|
||||
print(image_path)
|
||||
print('-'*20, 'Input Prompt', '-'*20)
|
||||
print(args.prompt)
|
||||
print('-'*20, 'Chat Output', '-'*20)
|
||||
print(res)
|
||||
|
|
@ -28,7 +28,7 @@ conda activate llm
|
|||
|
||||
pip install --pre --upgrade ipex-llm[all]
|
||||
pip install torchvision==0.16.2 --index-url https://download.pytorch.org/whl/cpu
|
||||
pip install transformers==4.40.0 trl
|
||||
pip install transformers==4.41.0 trl
|
||||
```
|
||||
|
||||
### 2. Run
|
||||
|
|
|
|||
Loading…
Reference in a new issue