Fix NPU load error message and add minicpm npu lowbit feat (#12064)
* fix npu_model raise sym_int4 error * add load_lowbit * remove print&perf
This commit is contained in:
parent
32e8362da7
commit
4ca330da15
2 changed files with 37 additions and 16 deletions
|
|
@ -37,6 +37,12 @@ if __name__ == "__main__":
|
||||||
help="The huggingface repo id for the Llama2 model to be downloaded"
|
help="The huggingface repo id for the Llama2 model to be downloaded"
|
||||||
", or the path to the huggingface checkpoint folder",
|
", or the path to the huggingface checkpoint folder",
|
||||||
)
|
)
|
||||||
|
parser.add_argument("--lowbit-path", type=str,
|
||||||
|
default="",
|
||||||
|
help="The path to the lowbit model folder, leave blank if you do not want to save. \
|
||||||
|
If path not exists, lowbit model will be saved there. \
|
||||||
|
Else, lowbit model will be loaded.",
|
||||||
|
)
|
||||||
parser.add_argument('--prompt', type=str, default="What is AI?",
|
parser.add_argument('--prompt', type=str, default="What is AI?",
|
||||||
help='Prompt to infer')
|
help='Prompt to infer')
|
||||||
parser.add_argument("--n-predict", type=int, default=32, help="Max tokens to predict")
|
parser.add_argument("--n-predict", type=int, default=32, help="Max tokens to predict")
|
||||||
|
|
@ -48,7 +54,7 @@ if __name__ == "__main__":
|
||||||
|
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
model_path = args.repo_id_or_model_path
|
model_path = args.repo_id_or_model_path
|
||||||
|
if not args.lowbit_path or not os.path.exists(args.lowbit_path):
|
||||||
model = AutoModelForCausalLM.from_pretrained(
|
model = AutoModelForCausalLM.from_pretrained(
|
||||||
model_path,
|
model_path,
|
||||||
torch_dtype=torch.float16,
|
torch_dtype=torch.float16,
|
||||||
|
|
@ -62,9 +68,24 @@ if __name__ == "__main__":
|
||||||
inter_pp=args.inter_pp,
|
inter_pp=args.inter_pp,
|
||||||
transpose_value_cache=not args.disable_transpose_value_cache,
|
transpose_value_cache=not args.disable_transpose_value_cache,
|
||||||
)
|
)
|
||||||
|
else:
|
||||||
|
model = AutoModelForCausalLM.load_low_bit(
|
||||||
|
args.lowbit_path,
|
||||||
|
attn_implementation="eager",
|
||||||
|
torch_dtype=torch.float16,
|
||||||
|
optimize_model=True,
|
||||||
|
max_output_len=args.max_output_len,
|
||||||
|
max_prompt_len=args.max_prompt_len,
|
||||||
|
intra_pp=args.intra_pp,
|
||||||
|
inter_pp=args.inter_pp,
|
||||||
|
transpose_value_cache=not args.disable_transpose_value_cache,
|
||||||
|
trust_remote_code=True,
|
||||||
|
)
|
||||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||||
|
|
||||||
|
if args.lowbit_path and not os.path.exists(args.lowbit_path):
|
||||||
|
model.save_low_bit(args.lowbit_path)
|
||||||
|
|
||||||
print("-" * 80)
|
print("-" * 80)
|
||||||
print("done")
|
print("done")
|
||||||
with torch.inference_mode():
|
with torch.inference_mode():
|
||||||
|
|
|
||||||
|
|
@ -270,7 +270,7 @@ class _BaseAutoModelClass:
|
||||||
invalidInputError(
|
invalidInputError(
|
||||||
qtype in ["sym_int8_rtn", "sym_int4_rtn"],
|
qtype in ["sym_int8_rtn", "sym_int4_rtn"],
|
||||||
f"Unknown bigdl_transformers_low_bit value: {qtype},"
|
f"Unknown bigdl_transformers_low_bit value: {qtype},"
|
||||||
f" expected: sym_int4, asym_int4, sym_int5, asym_int5 or sym_int8.",
|
f" expected: sym_int8_rtn, sym_int4_rtn. "
|
||||||
)
|
)
|
||||||
|
|
||||||
has_remote_code = hasattr(config, "auto_map") and cls.HF_Model.__name__ in config.auto_map
|
has_remote_code = hasattr(config, "auto_map") and cls.HF_Model.__name__ in config.auto_map
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue