[LLM] whisper model transformer int4 verification and example (#8511)
* LLM: transformer api support * va * example * revert * pep8 * pep8
This commit is contained in:
parent
9a7bc17ca1
commit
49d636e295
4 changed files with 137 additions and 1 deletions
|
|
@ -0,0 +1,59 @@
|
|||
# Whisper
|
||||
|
||||
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Whisper models. For illustration purposes, we utilize the [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) as a reference Whisper model.
|
||||
|
||||
## 0. Requirements
|
||||
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
|
||||
|
||||
## Example: Predict Tokens using `generate()` API
|
||||
In the example [generate.py](./generate.py), we show a basic use case for a Whisper model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations.
|
||||
### 1. Install
|
||||
We suggest using conda to manage environment:
|
||||
```bash
|
||||
conda create -n llm python=3.9
|
||||
conda activate llm
|
||||
|
||||
pip install bigdl-llm[all] # install bigdl-llm with 'all' option
|
||||
```
|
||||
|
||||
### 2. Run
|
||||
```
|
||||
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --repo-id-or-data-path REPO_ID_OR_DATA_PATH --language LANGUAGE
|
||||
```
|
||||
|
||||
Arguments info:
|
||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Whisper model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'openai/whisper-tiny'`.
|
||||
- `--repo-id-or-data-path REPO_ID_OR_DATA_PATH`: argument defining the huggingface repo id for the audio dataset to be downloaded, or the path to the huggingface dataset folder. It is default to be `'hf-internal-testing/librispeech_asr_dummy'`.
|
||||
- `--language LANGUAGE`: argument defining language to be transcribed. It is default to be `english`.
|
||||
|
||||
> **Note**: When loading the model in 4-bit, BigDL-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference.
|
||||
>
|
||||
> Please select the appropriate size of the Whisper model based on the capabilities of your machine.
|
||||
|
||||
#### 2.1 Client
|
||||
On client Windows machine, it is recommended to run directly with full utilization of all cores:
|
||||
```powershell
|
||||
python ./generate.py
|
||||
```
|
||||
|
||||
#### 2.2 Server
|
||||
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
|
||||
|
||||
E.g. on Linux,
|
||||
```bash
|
||||
# set BigDL-Nano env variables
|
||||
source bigdl-nano-init
|
||||
|
||||
# e.g. for a server with 48 cores per socket
|
||||
export OMP_NUM_THREADS=48
|
||||
numactl -C 0-47 -m 0 python ./generate.py
|
||||
```
|
||||
|
||||
#### 2.3 Sample Output
|
||||
#### [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny)
|
||||
|
||||
```log
|
||||
Inference time: 0.23290777206420898 s
|
||||
-------------------- Output --------------------
|
||||
[" Mr. Quilter is the Apostle of the Middle classes and we're glad to welcome his Gospel."]
|
||||
```
|
||||
|
|
@ -0,0 +1,73 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import torch
|
||||
import time
|
||||
import argparse
|
||||
|
||||
from bigdl.llm.transformers import AutoModelForSpeechSeq2Seq
|
||||
from transformers import WhisperProcessor
|
||||
from datasets import load_dataset
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Whisper model')
|
||||
parser.add_argument('--repo-id-or-model-path', type=str, default="openai/whisper-tiny",
|
||||
help='The huggingface repo id for the whisper model to be downloaded'
|
||||
', or the path to the huggingface checkpoint folder')
|
||||
parser.add_argument('--repo-id-or-data-path', type=str,
|
||||
default="hf-internal-testing/librispeech_asr_dummy",
|
||||
help='The huggingface repo id for the audio dataset to be downloaded'
|
||||
', or the path to the huggingface dataset folder')
|
||||
parser.add_argument('--language', type=str, default="english",
|
||||
help='language to be transcribed')
|
||||
|
||||
args = parser.parse_args()
|
||||
model_path = args.repo_id_or_model_path
|
||||
dataset_path = args.repo_id_or_data_path
|
||||
language = args.language
|
||||
|
||||
# Load model in 4 bit,
|
||||
# which convert the relevant layers in the model into INT4 format
|
||||
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_path,
|
||||
load_in_4bit=True)
|
||||
model.config.forced_decoder_ids = None
|
||||
|
||||
# Load tokenizer
|
||||
processor = WhisperProcessor.from_pretrained(model_path)
|
||||
forced_decoder_ids = processor.get_decoder_prompt_ids(language=language, task="transcribe")
|
||||
|
||||
# load dummy dataset and read audio files
|
||||
ds = load_dataset(dataset_path, "clean", split="validation")
|
||||
|
||||
# Generate predicted tokens
|
||||
with torch.inference_mode():
|
||||
sample = ds[0]["audio"]
|
||||
|
||||
input_features = processor(sample["array"],
|
||||
sampling_rate=sample["sampling_rate"],
|
||||
return_tensors="pt").input_features
|
||||
st = time.time()
|
||||
# if your selected model is capable of utilizing previous key/value attentions
|
||||
# to enhance decoding speed, but has `"use_cache": false` in its model config,
|
||||
# it is important to set `use_cache=True` explicitly in the `generate` function
|
||||
# to obtain optimal performance with BigDL-LLM INT4 optimizations
|
||||
predicted_ids = model.generate(input_features,
|
||||
forced_decoder_ids=forced_decoder_ids)
|
||||
end = time.time()
|
||||
output_str = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
||||
print(f'Inference time: {end-st} s')
|
||||
print('-'*20, 'Output', '-'*20)
|
||||
print(output_str)
|
||||
|
|
@ -15,5 +15,5 @@
|
|||
#
|
||||
|
||||
from .convert import ggml_convert_quant
|
||||
from .model import AutoModelForCausalLM, AutoModel, AutoModelForSeq2SeqLM
|
||||
from .model import AutoModelForCausalLM, AutoModel, AutoModelForSeq2SeqLM, AutoModelForSpeechSeq2Seq
|
||||
from .modelling_bigdl import BigdlNativeForCausalLM
|
||||
|
|
|
|||
|
|
@ -162,5 +162,9 @@ class AutoModel(_BaseAutoModelClass):
|
|||
HF_Model = transformers.AutoModel
|
||||
|
||||
|
||||
class AutoModelForSpeechSeq2Seq(_BaseAutoModelClass):
|
||||
HF_Model = transformers.AutoModelForSpeechSeq2Seq
|
||||
|
||||
|
||||
class AutoModelForSeq2SeqLM(_BaseAutoModelClass):
|
||||
HF_Model = transformers.AutoModelForSeq2SeqLM
|
||||
|
|
|
|||
Loading…
Reference in a new issue