ipex-llm/python/llm/src/bigdl/llm/transformers/model.py
Zhao Changmin 49d636e295 [LLM] whisper model transformer int4 verification and example (#8511)
* LLM: transformer api support

* va

* example

* revert

* pep8

* pep8
2023-07-19 08:33:20 +08:00

170 lines
7.3 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import transformers
from transformers.configuration_utils import PretrainedConfig
from .utils import extract_local_archive_file, load_state_dict, load
from bigdl.llm.ggml.quantize import ggml_tensor_qtype
from bigdl.llm.utils.common import invalidInputError
def save_low_bit(self, *args, **kwargs):
invalidInputError(self.config.to_dict().get("bigdl_transformers_low_bit", False),
f"Detected this model is not a low-bit model, please use from_pretrained's"
f" load_in_4bit or load_in_low_bit parameter to load a 4-bit model first.")
self.save_pretrained(*args, **kwargs)
class _BaseAutoModelClass:
HF_MODEL = None
@classmethod
def from_pretrained(cls,
*args,
**kwargs):
"""
Load a model from a directory or the HF Hub. Use load_in_4bit or load_in_low_bit parameter
the weight of model's linears can be loaded to low-bit format, like int4, int5 and int8.
Two new arguments are added to extend Hugging Face's from_pretrained method as follows:
New Arguments:
load_in_4bit: boolean value, True means load linear's weight to symmetric int 4.
load_in_low_bit: str value, options are sym_int4, asym_int4, sym_int5, asym_int5
or sym_int8. (sym_int4 means symmetric int 4, asym_int4 means
asymmetric int 4, etc.). Relevant low bit optimizations will
be applied to the model.
"""
pretrained_model_name_or_path = kwargs.get("pretrained_model_name_or_path", None) \
if len(args) == 0 else args[0]
config_dict, _ = PretrainedConfig.get_config_dict(pretrained_model_name_or_path)
bigdl_transformers_low_bit = config_dict.pop("bigdl_transformers_low_bit", False)
invalidInputError(not bigdl_transformers_low_bit,
f"Detected model is a low-bit({bigdl_transformers_low_bit}) model, "
f"Please use load_low_bit to load this model.")
# For huggingface transformers cls.HF_Model.from_pretrained could only restore the model
# in the original format, which is not quantized,
# we can convert the model to quantized later.
load_in_4bit = kwargs.pop("load_in_4bit", False)
load_in_low_bit = kwargs.pop("load_in_low_bit", None)
if load_in_4bit or load_in_low_bit:
# load int x-bit
kwargs["low_cpu_mem_usage"] = True
q_k = load_in_low_bit if load_in_low_bit else "sym_int4"
model = cls.load_convert(q_k, *args, **kwargs)
else:
# load default
model = cls.HF_Model.from_pretrained(*args, **kwargs)
return model
@classmethod
def load_convert(cls, q_k, *args, **kwargs):
from .convert import ggml_convert_quant
invalidInputError(q_k in ggml_tensor_qtype,
f"Unknown load_in_low_bit value: {q_k}, expected:"
f" sym_int4, asym_int4, sym_int5, asym_int5 or sym_int8.")
qtype = ggml_tensor_qtype[q_k]
model = cls.HF_Model.from_pretrained(*args, **kwargs)
model = model.to("cpu")
model = ggml_convert_quant(model, qtype)
model.config.update({"bigdl_transformers_low_bit": q_k})
# add save_low_bit to pretrained model dynamically
import types
model.save_low_bit = types.MethodType(save_low_bit, model)
return model
@classmethod
def load_low_bit(cls,
*args,
**kwargs):
# Read bigdl_transformers_low_bit from config.json
pretrained_model_name_or_path = kwargs.get("pretrained_model_name_or_path", None) \
if len(args) == 0 else args[0]
config_dict, _ = PretrainedConfig.get_config_dict(pretrained_model_name_or_path)
bigdl_transformers_low_bit = config_dict.pop("bigdl_transformers_low_bit", False)
invalidInputError(bigdl_transformers_low_bit,
"Detect this model is not a low-bit model, Please use from_pretrained"
" with load_in_4bit or load_in_low_bit to get a low-bit model , and "
" serialize the model using save_low_bit first.")
invalidInputError(bigdl_transformers_low_bit in ggml_tensor_qtype,
f"Unknown bigdl_transformers_low_bit value: {bigdl_transformers_low_bit},"
f" expected: sym_int4, asym_int4, sym_int5, asym_int5 or sym_int8.")
# Speed up when loading model
kwargs["low_cpu_mem_usage"] = True
qtype = ggml_tensor_qtype[bigdl_transformers_low_bit]
# Note that the int4 linear layers cannot currently
# be recorded in huggingface Pretrained Model or AutoConfig,
# and huggingface transformers cls.HF_Model.from_pretrained
# could only restore the model in the original format,
# which is not quantized. we can Initialize original model first,
# convert the model to quantized int4 format later, and then load the quantized model.
# Avoid KeyError
kwargs["ignore_mismatched_sizes"] = True
# Avoid reading from local file at the first initialization
kwargs["state_dict"] = {}
# Maybe needed when extract_local_archive_file
subfolder = kwargs.get("subfolder", "")
variant = kwargs.get("variant", None)
from .convert import ggml_convert_quant
model = cls.HF_Model.from_pretrained(*args, **kwargs)
print("Note: If there are warnings during the model loading process, "
"they can be safely ignored; "
"the model will be loaded with INT4 optimizations applied.")
# add save_low_bit to pretrained model dynamically
import types
model.save_low_bit = types.MethodType(save_low_bit, model)
# We forcefully modify the model's definition
# and the tensor shape of int4 weights without quantization.
model = ggml_convert_quant(model, qtype, convert_shape_only=True)
# Load the quantized model at last.
archive_file = extract_local_archive_file(pretrained_model_name_or_path,
subfolder,
variant)
state_dict = load_state_dict(archive_file)
load(model, state_dict)
del state_dict
return model
class AutoModelForCausalLM(_BaseAutoModelClass):
HF_Model = transformers.AutoModelForCausalLM
class AutoModel(_BaseAutoModelClass):
HF_Model = transformers.AutoModel
class AutoModelForSpeechSeq2Seq(_BaseAutoModelClass):
HF_Model = transformers.AutoModelForSpeechSeq2Seq
class AutoModelForSeq2SeqLM(_BaseAutoModelClass):
HF_Model = transformers.AutoModelForSeq2SeqLM