[LLM] whisper model transformer int4 verification and example (#8511)

* LLM: transformer api support

* va

* example

* revert

* pep8

* pep8
This commit is contained in:
Zhao Changmin 2023-07-19 08:33:20 +08:00 committed by GitHub
parent 9a7bc17ca1
commit 49d636e295
4 changed files with 137 additions and 1 deletions

View file

@ -0,0 +1,59 @@
# Whisper
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Whisper models. For illustration purposes, we utilize the [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) as a reference Whisper model.
## 0. Requirements
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
## Example: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a Whisper model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations.
### 1. Install
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.9
conda activate llm
pip install bigdl-llm[all] # install bigdl-llm with 'all' option
```
### 2. Run
```
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --repo-id-or-data-path REPO_ID_OR_DATA_PATH --language LANGUAGE
```
Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Whisper model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'openai/whisper-tiny'`.
- `--repo-id-or-data-path REPO_ID_OR_DATA_PATH`: argument defining the huggingface repo id for the audio dataset to be downloaded, or the path to the huggingface dataset folder. It is default to be `'hf-internal-testing/librispeech_asr_dummy'`.
- `--language LANGUAGE`: argument defining language to be transcribed. It is default to be `english`.
> **Note**: When loading the model in 4-bit, BigDL-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference.
>
> Please select the appropriate size of the Whisper model based on the capabilities of your machine.
#### 2.1 Client
On client Windows machine, it is recommended to run directly with full utilization of all cores:
```powershell
python ./generate.py
```
#### 2.2 Server
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
E.g. on Linux,
```bash
# set BigDL-Nano env variables
source bigdl-nano-init
# e.g. for a server with 48 cores per socket
export OMP_NUM_THREADS=48
numactl -C 0-47 -m 0 python ./generate.py
```
#### 2.3 Sample Output
#### [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny)
```log
Inference time: 0.23290777206420898 s
-------------------- Output --------------------
[" Mr. Quilter is the Apostle of the Middle classes and we're glad to welcome his Gospel."]
```

View file

@ -0,0 +1,73 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import time
import argparse
from bigdl.llm.transformers import AutoModelForSpeechSeq2Seq
from transformers import WhisperProcessor
from datasets import load_dataset
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Whisper model')
parser.add_argument('--repo-id-or-model-path', type=str, default="openai/whisper-tiny",
help='The huggingface repo id for the whisper model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--repo-id-or-data-path', type=str,
default="hf-internal-testing/librispeech_asr_dummy",
help='The huggingface repo id for the audio dataset to be downloaded'
', or the path to the huggingface dataset folder')
parser.add_argument('--language', type=str, default="english",
help='language to be transcribed')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
dataset_path = args.repo_id_or_data_path
language = args.language
# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_path,
load_in_4bit=True)
model.config.forced_decoder_ids = None
# Load tokenizer
processor = WhisperProcessor.from_pretrained(model_path)
forced_decoder_ids = processor.get_decoder_prompt_ids(language=language, task="transcribe")
# load dummy dataset and read audio files
ds = load_dataset(dataset_path, "clean", split="validation")
# Generate predicted tokens
with torch.inference_mode():
sample = ds[0]["audio"]
input_features = processor(sample["array"],
sampling_rate=sample["sampling_rate"],
return_tensors="pt").input_features
st = time.time()
# if your selected model is capable of utilizing previous key/value attentions
# to enhance decoding speed, but has `"use_cache": false` in its model config,
# it is important to set `use_cache=True` explicitly in the `generate` function
# to obtain optimal performance with BigDL-LLM INT4 optimizations
predicted_ids = model.generate(input_features,
forced_decoder_ids=forced_decoder_ids)
end = time.time()
output_str = processor.batch_decode(predicted_ids, skip_special_tokens=True)
print(f'Inference time: {end-st} s')
print('-'*20, 'Output', '-'*20)
print(output_str)

View file

@ -15,5 +15,5 @@
# #
from .convert import ggml_convert_quant from .convert import ggml_convert_quant
from .model import AutoModelForCausalLM, AutoModel, AutoModelForSeq2SeqLM from .model import AutoModelForCausalLM, AutoModel, AutoModelForSeq2SeqLM, AutoModelForSpeechSeq2Seq
from .modelling_bigdl import BigdlNativeForCausalLM from .modelling_bigdl import BigdlNativeForCausalLM

View file

@ -162,5 +162,9 @@ class AutoModel(_BaseAutoModelClass):
HF_Model = transformers.AutoModel HF_Model = transformers.AutoModel
class AutoModelForSpeechSeq2Seq(_BaseAutoModelClass):
HF_Model = transformers.AutoModelForSpeechSeq2Seq
class AutoModelForSeq2SeqLM(_BaseAutoModelClass): class AutoModelForSeq2SeqLM(_BaseAutoModelClass):
HF_Model = transformers.AutoModelForSeq2SeqLM HF_Model = transformers.AutoModelForSeq2SeqLM