add npu_group_size for transformers_int4_npu_win in all-in-one benchmark api (#12316)
* add `npu_group_size` for `transformers_int4_npu_win` small bugfix * update
This commit is contained in:
parent
cd5e22cee5
commit
48123af463
6 changed files with 21 additions and 15 deletions
|
|
@ -43,3 +43,4 @@ optimize_model: False # whether apply further optimization on NPU (only availabl
|
|||
use_fp16_torch_dtype: True # whether use fp16 for non-linear layer (only available now for "pipeline_parallel_gpu" test_api)
|
||||
task: 'continuation' # task can be 'continuation', 'QA' and 'summarize'
|
||||
transpose_value_cache: True # whether apply transposed v_cache optimization on NPU (only available now for transformers_int4_npu_win test_api)
|
||||
npu_group_size: 128 # This can only be either 0 or 128, and only works for `transformers_int4_npu_win` / `transformers_int4_npu_pipline_win`
|
||||
|
|
|
|||
|
|
@ -190,7 +190,7 @@ def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1,
|
|||
elif test_api == 'pipeline_parallel_gpu':
|
||||
result = run_pipeline_parallel_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size, cpu_embedding, fp16=use_fp16_torch_dtype)
|
||||
elif test_api == 'transformers_int4_npu_win':
|
||||
result = transformers_int4_npu_win(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size, optimize_model, transpose_value_cache)
|
||||
result = transformers_int4_npu_win(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size, optimize_model, transpose_value_cache, group_size)
|
||||
elif test_api == 'transformers_int4_loadlowbit_npu_win':
|
||||
result = run_transformer_int4_loadlowbit_npu_win(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size, optimize_model, transpose_value_cache)
|
||||
elif test_api == 'transformers_openvino':
|
||||
|
|
@ -214,7 +214,8 @@ def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1,
|
|||
round(result[in_out_pair][-1][5], 2),
|
||||
result[in_out_pair][-1][6] if any(keyword in test_api for keyword in ['int4_gpu', 'int4_fp16_gpu_win', 'int4_loadlowbit_gpu', 'int4_fp16_loadlowbit_gpu', 'fp16_gpu', 'deepspeed_optimize_model_gpu']) and not lookahead else 'N/A',
|
||||
streaming if 'win' in test_api else 'N/A',
|
||||
use_fp16_torch_dtype if 'pipeline_parallel_gpu' in test_api else 'N/A'],
|
||||
use_fp16_torch_dtype if 'pipeline_parallel_gpu' in test_api else 'N/A',
|
||||
group_size],
|
||||
)
|
||||
|
||||
|
||||
|
|
@ -589,9 +590,9 @@ def run_transformer_int4_gpu(repo_id,
|
|||
file.seek(0, os.SEEK_END)
|
||||
global line_counter
|
||||
if file.tell() == 0:
|
||||
csv_writer.writerow(["", "model", "1st token avg latency (ms)", "2+ avg latency (ms/token)", "encoder time (ms)", "input/output tokens", "batch_size", "actual input/output tokens", "num_beams", "low_bit", "cpu_embedding", "model loading time (s)", "peak mem (GB)", "streaming", "use_fp16_torch_dtype"])
|
||||
csv_writer.writerow(["", "model", "1st token avg latency (ms)", "2+ avg latency (ms/token)", "encoder time (ms)", "input/output tokens", "batch_size", "actual input/output tokens", "num_beams", "low_bit", "cpu_embedding", "model loading time (s)", "peak mem (GB)", "streaming", "use_fp16_torch_dtype", "npu_group_size"])
|
||||
line_counter +=1
|
||||
csv_writer.writerow([line_counter-1, repo_id, first_token_latency, rest_token_latency, encoder_time, input_output_tokens, batch_size, actual_input_output_tokens, num_beams, low_bit, '', load_time, peak_mem, streaming, use_fp16_torch_dtype])
|
||||
csv_writer.writerow([line_counter-1, repo_id, first_token_latency, rest_token_latency, encoder_time, input_output_tokens, batch_size, actual_input_output_tokens, num_beams, low_bit, '', load_time, peak_mem, streaming, use_fp16_torch_dtype, group_size])
|
||||
line_counter += 1
|
||||
|
||||
model.to('cpu')
|
||||
|
|
@ -611,7 +612,8 @@ def transformers_int4_npu_win(repo_id,
|
|||
low_bit,
|
||||
batch_size,
|
||||
optimize_model,
|
||||
transpose_value_cache):
|
||||
transpose_value_cache,
|
||||
npu_group_size):
|
||||
from ipex_llm.transformers.npu_model import AutoModel, AutoModelForCausalLM
|
||||
from transformers import AutoTokenizer, LlamaTokenizer
|
||||
|
||||
|
|
@ -623,17 +625,20 @@ def transformers_int4_npu_win(repo_id,
|
|||
st = time.perf_counter()
|
||||
if repo_id in CHATGLM_IDS:
|
||||
model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True,
|
||||
optimize_model=optimize_model, max_context_len=max_context_len, max_prompt_len=int(in_out_len[0]), transpose_value_cache=transpose_value_cache,
|
||||
optimize_model=optimize_model, max_context_len=max_context_len, max_prompt_len=int(in_out_len[0]),
|
||||
quantization_group_size=npu_group_size, transpose_value_cache=transpose_value_cache,
|
||||
torch_dtype=torch.float16, attn_implementation="eager").eval()
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
elif repo_id in LLAMA_IDS:
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True, torch_dtype=torch.float16,
|
||||
optimize_model=optimize_model, max_context_len=max_context_len, max_prompt_len=int(in_out_len[0]), transpose_value_cache=transpose_value_cache,
|
||||
optimize_model=optimize_model, max_context_len=max_context_len, max_prompt_len=int(in_out_len[0]),
|
||||
quantization_group_size=npu_group_size, transpose_value_cache=transpose_value_cache,
|
||||
use_cache=True, attn_implementation="eager").eval()
|
||||
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
else:
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True, torch_dtype=torch.float16,
|
||||
optimize_model=optimize_model, max_context_len=max_context_len, max_prompt_len=int(in_out_len[0]), transpose_value_cache=transpose_value_cache,
|
||||
optimize_model=optimize_model, max_context_len=max_context_len, max_prompt_len=int(in_out_len[0]),
|
||||
quantization_group_size=npu_group_size, transpose_value_cache=transpose_value_cache,
|
||||
use_cache=True, attn_implementation="eager").eval()
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
end = time.perf_counter()
|
||||
|
|
@ -2191,8 +2196,8 @@ if __name__ == '__main__':
|
|||
task = conf['task']
|
||||
if 'optimize_model' in conf:
|
||||
optimize_model = conf['optimize_model']
|
||||
if 'group_size' in conf:
|
||||
group_size = conf['group_size']
|
||||
if 'npu_group_size' in conf:
|
||||
group_size = conf['npu_group_size']
|
||||
lookahead = False
|
||||
transpose_value_cache = True
|
||||
if 'transpose_value_cache' in conf:
|
||||
|
|
@ -2225,7 +2230,7 @@ if __name__ == '__main__':
|
|||
conf['low_bit'], conf['cpu_embedding'], batch_size, streaming, use_fp16_torch_dtype, lookahead, task, optimize_model, transpose_value_cache, group_size)
|
||||
df = pd.DataFrame(results, columns=['model', '1st token avg latency (ms)', '2+ avg latency (ms/token)', 'encoder time (ms)',
|
||||
'input/output tokens', 'batch_size', 'actual input/output tokens', 'num_beams', 'low_bit', 'cpu_embedding',
|
||||
'model loading time (s)', 'peak mem (GB)', 'streaming', 'use_fp16_torch_dtype'])
|
||||
'model loading time (s)', 'peak mem (GB)', 'streaming', 'use_fp16_torch_dtype', 'npu_group_size'])
|
||||
if "pipeline" in api or "deepspeed" in api:
|
||||
if torch.distributed.get_rank() == 0:
|
||||
df.index += max(line_counter - 1, 0)
|
||||
|
|
|
|||
|
|
@ -868,7 +868,7 @@ class PrefillRunner:
|
|||
seq_len <= self.max_prompt_len,
|
||||
(
|
||||
f"seq_len: {seq_len} should be less than or equal"
|
||||
" to max_prompt_len {self.max_prompt_len}"
|
||||
f" to max_prompt_len {self.max_prompt_len}"
|
||||
),
|
||||
)
|
||||
pad_len = self.max_prompt_len - seq_len
|
||||
|
|
|
|||
|
|
@ -907,7 +907,7 @@ class PrefillRunner:
|
|||
seq_len <= self.max_prompt_len,
|
||||
(
|
||||
f"seq_len: {seq_len} should be less than or equal"
|
||||
" to max_prompt_len {self.max_prompt_len}"
|
||||
f" to max_prompt_len {self.max_prompt_len}"
|
||||
),
|
||||
)
|
||||
pad_len = self.max_prompt_len - seq_len
|
||||
|
|
|
|||
|
|
@ -829,7 +829,7 @@ class PrefillRunner:
|
|||
seq_len <= self.max_prompt_len,
|
||||
(
|
||||
f"seq_len: {seq_len} should be less than or equal"
|
||||
" to max_prompt_len {self.max_prompt_len}"
|
||||
f" to max_prompt_len {self.max_prompt_len}"
|
||||
),
|
||||
)
|
||||
pad_len = self.max_prompt_len - seq_len
|
||||
|
|
|
|||
|
|
@ -971,7 +971,7 @@ class PrefillRunner:
|
|||
seq_len <= self.max_prompt_len,
|
||||
(
|
||||
f"seq_len: {seq_len} should be less than or equal"
|
||||
" to max_prompt_len {self.max_prompt_len}"
|
||||
f" to max_prompt_len {self.max_prompt_len}"
|
||||
),
|
||||
)
|
||||
pad_len = self.max_prompt_len - seq_len
|
||||
|
|
|
|||
Loading…
Reference in a new issue