refactor chatglm2, internlm, stablelm and qwen (#12604)
This commit is contained in:
		
							parent
							
								
									073f936c37
								
							
						
					
					
						commit
						4135b895b3
					
				
					 4 changed files with 53 additions and 279 deletions
				
			
		| 
						 | 
				
			
			@ -18,17 +18,16 @@
 | 
			
		|||
#
 | 
			
		||||
 | 
			
		||||
import os
 | 
			
		||||
import math
 | 
			
		||||
import torch
 | 
			
		||||
from typing import Optional, Tuple
 | 
			
		||||
from transformers.modeling_outputs import BaseModelOutputWithPast
 | 
			
		||||
from ipex_llm.utils.common.log4Error import invalidInputError
 | 
			
		||||
from ipex_llm.transformers.models.utils import restore_fp8_kv_cache, update_past_key_value
 | 
			
		||||
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, use_sdp, use_sdp_causal
 | 
			
		||||
from ipex_llm.transformers.models.common import scaled_dot_product_attention
 | 
			
		||||
from ipex_llm.transformers.models.utils import update_past_key_value
 | 
			
		||||
from ipex_llm.transformers.models.utils import use_quantize_kv_cache
 | 
			
		||||
from ipex_llm.transformers.models.utils import should_use_fuse_rope, apply_rotary_pos_emb
 | 
			
		||||
from ipex_llm.transformers.models.utils import mlp_fusion_check, SILU
 | 
			
		||||
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, use_sdp, \
 | 
			
		||||
    use_sdp_causal, should_use_compresskv, is_enough_kv_cache_room_4_36
 | 
			
		||||
from ipex_llm.transformers.models.utils import use_quantize_kv_cache
 | 
			
		||||
from ipex_llm.transformers.models.utils import should_use_compresskv, is_enough_kv_cache_room_4_36
 | 
			
		||||
from ipex_llm.transformers.kv import DynamicCompressCache, DynamicCompressFp8Cache
 | 
			
		||||
 | 
			
		||||
KV_CACHE_ALLOC_BLOCK_LENGTH = int(os.environ.get("KV_CACHE_ALLOC_BLOCK_LENGTH", 256))
 | 
			
		||||
| 
						 | 
				
			
			@ -310,50 +309,10 @@ def chatglm2_attention_forward(
 | 
			
		|||
                          value_states.permute(2, 0, 1, 3)) if use_cache else None
 | 
			
		||||
 | 
			
		||||
    # IPEX-LLM OPT: sdp
 | 
			
		||||
    attn_weights = None
 | 
			
		||||
    if use_sdp(q_len, kv_seq_len, head_dim, query_states):
 | 
			
		||||
        import xe_addons
 | 
			
		||||
        if use_compresskv and attention_mask is not None:
 | 
			
		||||
            attention_mask = None
 | 
			
		||||
        if use_quantize_kv:
 | 
			
		||||
            attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states, attention_mask)
 | 
			
		||||
        else:
 | 
			
		||||
            attn_output = xe_addons.sdp(query_states, key_states, value_states, attention_mask)
 | 
			
		||||
    elif use_sdp_causal(q_len, kv_seq_len, head_dim, query_states, self.training):
 | 
			
		||||
        import xe_addons
 | 
			
		||||
        if use_quantize_kv:
 | 
			
		||||
            attn_output = xe_addons.sdp_fp8_causal(query_states, key_states, value_states,
 | 
			
		||||
                                                   attention_mask)
 | 
			
		||||
        else:
 | 
			
		||||
            attn_output = xe_addons.sdp_causal(query_states, key_states, value_states,
 | 
			
		||||
                                               attention_mask)
 | 
			
		||||
    elif query_states.device.type == "cpu":
 | 
			
		||||
        # repeat k/v heads if n_kv_heads < n_heads
 | 
			
		||||
        key_states = repeat_kv(key_states, n_head // n_kv_head)
 | 
			
		||||
        value_states = repeat_kv(value_states, n_head // n_kv_head)
 | 
			
		||||
        if q_len == kv_seq_len:
 | 
			
		||||
            attn_output = torch.nn.functional.scaled_dot_product_attention(
 | 
			
		||||
                query_states, key_states, value_states, is_causal=True
 | 
			
		||||
            )
 | 
			
		||||
        else:
 | 
			
		||||
            attn_output = torch.nn.functional.scaled_dot_product_attention(
 | 
			
		||||
                query_states, key_states, value_states, attention_mask
 | 
			
		||||
            )
 | 
			
		||||
    else:
 | 
			
		||||
        if use_quantize_kv:
 | 
			
		||||
            key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
 | 
			
		||||
                                                            query_states.dtype)
 | 
			
		||||
        # repeat k/v heads if n_kv_heads < n_heads
 | 
			
		||||
        key_states = repeat_kv(key_states, n_head // n_kv_head)
 | 
			
		||||
        value_states = repeat_kv(value_states, n_head // n_kv_head)
 | 
			
		||||
 | 
			
		||||
        attn_weights = torch.matmul(query_states,
 | 
			
		||||
                                    key_states.transpose(2, 3)) / math.sqrt(head_dim)
 | 
			
		||||
        if attention_mask is not None:
 | 
			
		||||
            attn_weights = attn_weights + attention_mask
 | 
			
		||||
        attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1,
 | 
			
		||||
                                                   dtype=torch.float32).to(value_states.dtype)
 | 
			
		||||
        attn_output = torch.matmul(attn_weights, value_states)
 | 
			
		||||
    attn_output = scaled_dot_product_attention(
 | 
			
		||||
        query_states, key_states, value_states,
 | 
			
		||||
        attention_mask, q_len == kv_seq_len
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # context_layer's shape: [bsz, n_head, seq_len, head_dim] -> [seq_len, bsz, n_head * head_dim]
 | 
			
		||||
    attn_output = attn_output.permute(2, 0, 1, 3).contiguous().view(q_len, bsz, n_head * head_dim)
 | 
			
		||||
| 
						 | 
				
			
			@ -541,29 +500,10 @@ def codegeex_attention_forward(
 | 
			
		|||
    # =================
 | 
			
		||||
    # Output. [sq, b, h]
 | 
			
		||||
    # =================
 | 
			
		||||
    context_layer = None
 | 
			
		||||
    if use_sdp(q_len, kv_seq_len, head_dim, query_layer):
 | 
			
		||||
        import xe_addons
 | 
			
		||||
        context_layer = xe_addons.sdp(query_layer, key_layer, value_layer, attention_mask)
 | 
			
		||||
    elif use_sdp_causal(q_len, kv_seq_len, head_dim, query_layer, self.training):
 | 
			
		||||
        import xe_addons
 | 
			
		||||
        context_layer = xe_addons.sdp_causal(query_layer, key_layer, value_layer, attention_mask)
 | 
			
		||||
    else:
 | 
			
		||||
        # repeat k/v heads if n_kv_heads < n_heads
 | 
			
		||||
        key_layer = repeat_kv(key_layer, n_head // n_kv_head)
 | 
			
		||||
        value_layer = repeat_kv(value_layer, n_head // n_kv_head)
 | 
			
		||||
        if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]:
 | 
			
		||||
            context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer,
 | 
			
		||||
                                                                             key_layer,
 | 
			
		||||
                                                                             value_layer,
 | 
			
		||||
                                                                             is_causal=True)
 | 
			
		||||
        else:
 | 
			
		||||
            if attention_mask is not None:
 | 
			
		||||
                attention_mask = ~attention_mask
 | 
			
		||||
            context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer,
 | 
			
		||||
                                                                             key_layer,
 | 
			
		||||
                                                                             value_layer,
 | 
			
		||||
                                                                             attention_mask)
 | 
			
		||||
    context_layer = scaled_dot_product_attention(
 | 
			
		||||
        query_layer, key_layer, value_layer,
 | 
			
		||||
        attention_mask, q_len == kv_seq_len
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    context_layer = context_layer.permute(2, 0, 1, 3).contiguous().view(q_len,
 | 
			
		||||
                                                                        bsz,
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -36,18 +36,16 @@
 | 
			
		|||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
""" PyTorch InternLM model."""
 | 
			
		||||
import math
 | 
			
		||||
from typing import Optional, Tuple, List
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
import torch.utils.checkpoint
 | 
			
		||||
from torch import nn
 | 
			
		||||
from ipex_llm.utils.common.log4Error import invalidInputError
 | 
			
		||||
from ipex_llm.transformers.models.common import merge_qkv_base, attention_softmax
 | 
			
		||||
from ipex_llm.transformers.models.common import merge_qkv_base
 | 
			
		||||
from ipex_llm.transformers.models.common import scaled_dot_product_attention
 | 
			
		||||
from ipex_llm.transformers.models.utils import should_use_fuse_rope, apply_rotary_pos_emb
 | 
			
		||||
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp8_kv_cache
 | 
			
		||||
from ipex_llm.transformers.models.utils import use_quantize_kv_cache
 | 
			
		||||
from ipex_llm.transformers.models.utils import update_past_key_value
 | 
			
		||||
from ipex_llm.transformers.models.utils import use_sdp, use_sdp_causal
 | 
			
		||||
from einops import rearrange
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -98,35 +96,10 @@ def internlm_attention_forward(
 | 
			
		|||
 | 
			
		||||
    # IPEX-LLM OPT: sdp
 | 
			
		||||
    attn_weights = None
 | 
			
		||||
    if use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
 | 
			
		||||
        import xe_addons
 | 
			
		||||
        if use_quantize_kv:
 | 
			
		||||
            attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states,
 | 
			
		||||
                                            attention_mask)
 | 
			
		||||
        else:
 | 
			
		||||
            attn_output = xe_addons.sdp(query_states, key_states, value_states, attention_mask)
 | 
			
		||||
    elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
 | 
			
		||||
        import xe_addons
 | 
			
		||||
        if use_quantize_kv:
 | 
			
		||||
            attn_output = xe_addons.sdp_fp8_causal(query_states, key_states,
 | 
			
		||||
                                                   value_states, attention_mask)
 | 
			
		||||
        else:
 | 
			
		||||
            attn_output = xe_addons.sdp_causal(query_states, key_states,
 | 
			
		||||
                                               value_states, attention_mask)
 | 
			
		||||
    else:
 | 
			
		||||
        if use_quantize_kv:
 | 
			
		||||
            key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
 | 
			
		||||
                                                            query_states.dtype)
 | 
			
		||||
 | 
			
		||||
        attn_weights = torch.matmul(query_states,
 | 
			
		||||
                                    key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
 | 
			
		||||
 | 
			
		||||
        if attention_mask is not None:
 | 
			
		||||
            attn_weights = attn_weights + attention_mask
 | 
			
		||||
 | 
			
		||||
        # upcast attention to fp32
 | 
			
		||||
        attn_weights = attention_softmax(attn_weights)
 | 
			
		||||
        attn_output = torch.matmul(attn_weights, value_states)
 | 
			
		||||
    attn_output = scaled_dot_product_attention(
 | 
			
		||||
        query_states, key_states, value_states,
 | 
			
		||||
        attention_mask, q_len == kv_seq_len
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    attn_output = attn_output.transpose(1, 2)
 | 
			
		||||
    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
 | 
			
		||||
| 
						 | 
				
			
			@ -207,38 +180,10 @@ def internlm2_attention_forward(
 | 
			
		|||
 | 
			
		||||
    # IPEX-LLM OPT: sdp
 | 
			
		||||
    attn_weights = None
 | 
			
		||||
    if use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
 | 
			
		||||
        import xe_addons
 | 
			
		||||
        if use_quantize_kv:
 | 
			
		||||
            attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states,
 | 
			
		||||
                                            attention_mask)
 | 
			
		||||
        else:
 | 
			
		||||
            attn_output = xe_addons.sdp(query_states, key_states, value_states, attention_mask)
 | 
			
		||||
    elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
 | 
			
		||||
        import xe_addons
 | 
			
		||||
        if use_quantize_kv:
 | 
			
		||||
            attn_output = xe_addons.sdp_fp8_causal(query_states, key_states,
 | 
			
		||||
                                                   value_states, attention_mask)
 | 
			
		||||
        else:
 | 
			
		||||
            attn_output = xe_addons.sdp_causal(query_states, key_states,
 | 
			
		||||
                                               value_states, attention_mask)
 | 
			
		||||
    else:
 | 
			
		||||
        if use_quantize_kv:
 | 
			
		||||
            key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
 | 
			
		||||
                                                            query_states.dtype)
 | 
			
		||||
        key_states = repeat_kv(key_states, self.num_key_value_groups)
 | 
			
		||||
        value_states = repeat_kv(value_states, self.num_key_value_groups)
 | 
			
		||||
 | 
			
		||||
        attn_weights = torch.matmul(query_states,
 | 
			
		||||
                                    key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
 | 
			
		||||
 | 
			
		||||
        if attention_mask is not None:
 | 
			
		||||
            attn_weights = attn_weights + attention_mask
 | 
			
		||||
 | 
			
		||||
        # upcast attention to fp32
 | 
			
		||||
        attn_weights = nn.functional.softmax(attn_weights,
 | 
			
		||||
                                             dim=-1, dtype=torch.float32).to(query_states.dtype)
 | 
			
		||||
        attn_output = torch.matmul(attn_weights, value_states)
 | 
			
		||||
    attn_output = scaled_dot_product_attention(
 | 
			
		||||
        query_states, key_states, value_states,
 | 
			
		||||
        attention_mask, q_len == kv_seq_len
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    attn_output = attn_output.transpose(1, 2).contiguous()
 | 
			
		||||
    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
 | 
			
		||||
| 
						 | 
				
			
			@ -409,38 +354,11 @@ def internlm_xcomposser2_attention_forward(
 | 
			
		|||
    past_key_value = (key_states, value_states) if use_cache else None
 | 
			
		||||
 | 
			
		||||
    # IPEX-LLM OPT: sdp
 | 
			
		||||
    if use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
 | 
			
		||||
        import xe_addons
 | 
			
		||||
        if use_quantize_kv:
 | 
			
		||||
            attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states,
 | 
			
		||||
                                            attention_mask)
 | 
			
		||||
        else:
 | 
			
		||||
            attn_output = xe_addons.sdp(query_states, key_states, value_states, attention_mask)
 | 
			
		||||
    elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
 | 
			
		||||
        import xe_addons
 | 
			
		||||
        if use_quantize_kv:
 | 
			
		||||
            attn_output = xe_addons.sdp_fp8_causal(query_states, key_states,
 | 
			
		||||
                                                   value_states, attention_mask)
 | 
			
		||||
        else:
 | 
			
		||||
            attn_output = xe_addons.sdp_causal(query_states, key_states,
 | 
			
		||||
                                               value_states, attention_mask)
 | 
			
		||||
    else:
 | 
			
		||||
        if use_quantize_kv:
 | 
			
		||||
            key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
 | 
			
		||||
                                                            query_states.dtype)
 | 
			
		||||
        key_states = repeat_kv(key_states, self.num_key_value_groups)
 | 
			
		||||
        value_states = repeat_kv(value_states, self.num_key_value_groups)
 | 
			
		||||
 | 
			
		||||
        attn_weights = torch.matmul(query_states,
 | 
			
		||||
                                    key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
 | 
			
		||||
 | 
			
		||||
        if attention_mask is not None:
 | 
			
		||||
            attn_weights = attn_weights + attention_mask
 | 
			
		||||
 | 
			
		||||
        # upcast attention to fp32
 | 
			
		||||
        attn_weights = nn.functional.softmax(attn_weights,
 | 
			
		||||
                                             dim=-1, dtype=torch.float32).to(query_states.dtype)
 | 
			
		||||
        attn_output = torch.matmul(attn_weights, value_states)
 | 
			
		||||
    attn_weights = None
 | 
			
		||||
    attn_output = scaled_dot_product_attention(
 | 
			
		||||
        query_states, key_states, value_states,
 | 
			
		||||
        attention_mask, q_len == kv_seq_len
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    attn_output = attn_output.transpose(1, 2).contiguous()
 | 
			
		||||
    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -22,19 +22,19 @@
 | 
			
		|||
# LICENSE file in the root directory of this source tree.
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
import math
 | 
			
		||||
from typing import Optional, Tuple, Union, Callable, List
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
import torch.nn.functional as F
 | 
			
		||||
import torch.utils.checkpoint
 | 
			
		||||
from transformers.utils import logging
 | 
			
		||||
from ipex_llm.transformers.models.common import scaled_dot_product_attention
 | 
			
		||||
from ipex_llm.transformers.models.utils import update_past_key_value, should_use_fuse_rope
 | 
			
		||||
from ipex_llm.transformers.models.utils import restore_fp8_kv_cache, use_quantize_kv_cache
 | 
			
		||||
from ipex_llm.transformers.models.utils import use_quantize_kv_cache
 | 
			
		||||
from ipex_llm.transformers.models.utils import rotate_half, SILU
 | 
			
		||||
from ipex_llm.transformers.models.utils import mlp_fusion_check
 | 
			
		||||
from ipex_llm.transformers.models.utils import use_flash_attention, use_sdp, use_sdp_causal
 | 
			
		||||
from ipex_llm.utils.common import invalidInputError, invalidOperationError
 | 
			
		||||
from ipex_llm.transformers.models.utils import use_flash_attention
 | 
			
		||||
from ipex_llm.utils.common import invalidInputError
 | 
			
		||||
from transformers.modeling_outputs import BaseModelOutputWithPast
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -118,20 +118,13 @@ def qwen_attention_forward(
 | 
			
		|||
 | 
			
		||||
    # IPEX-LLM OPT: sdp
 | 
			
		||||
    attn_weights = None
 | 
			
		||||
    if not self.training and not hidden_states.requires_grad and \
 | 
			
		||||
            use_flash_attention(query_states, key_states, attention_mask):
 | 
			
		||||
    if use_flash_attention(query_states, key_states, attention_mask):
 | 
			
		||||
        attn_output = F.scaled_dot_product_attention(query_states.to(dtype=torch.float16),
 | 
			
		||||
                                                     key_states.to(dtype=torch.float16),
 | 
			
		||||
                                                     value_states.to(dtype=torch.float16),
 | 
			
		||||
                                                     is_causal=True).to(hidden_states.dtype)
 | 
			
		||||
    elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
 | 
			
		||||
        import xe_addons
 | 
			
		||||
        if use_quantize_kv:
 | 
			
		||||
            attn_output = xe_addons.sdp_fp8_causal(query_states, key_states, value_states, None)
 | 
			
		||||
        else:
 | 
			
		||||
            attn_output = xe_addons.sdp_causal(query_states, key_states, value_states, None)
 | 
			
		||||
    else:
 | 
			
		||||
        if q_len > 1:
 | 
			
		||||
        if q_len > 1 and q_len != kv_seq_len:
 | 
			
		||||
            causal_mask = torch.tril(
 | 
			
		||||
                torch.ones((kv_seq_len, kv_seq_len), dtype=torch.bool, device=query_states.device)
 | 
			
		||||
            ).view(1, 1, kv_seq_len, kv_seq_len)
 | 
			
		||||
| 
						 | 
				
			
			@ -146,29 +139,10 @@ def qwen_attention_forward(
 | 
			
		|||
        else:
 | 
			
		||||
            attention_mask = None
 | 
			
		||||
 | 
			
		||||
        if use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
 | 
			
		||||
            import xe_addons
 | 
			
		||||
            if use_quantize_kv:
 | 
			
		||||
                attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states,
 | 
			
		||||
                                                attention_mask)
 | 
			
		||||
            else:
 | 
			
		||||
                attn_output = xe_addons.sdp(query_states, key_states, value_states,
 | 
			
		||||
                                            attention_mask)
 | 
			
		||||
        else:
 | 
			
		||||
            if use_quantize_kv:
 | 
			
		||||
                key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
 | 
			
		||||
                                                                query_states.dtype)
 | 
			
		||||
            attn_weights = torch.matmul(query_states,
 | 
			
		||||
                                        key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
 | 
			
		||||
            if attention_mask is not None:
 | 
			
		||||
                attn_weights = attn_weights + attention_mask
 | 
			
		||||
            if self.softmax_in_fp32:
 | 
			
		||||
                attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1,
 | 
			
		||||
                                                           dtype=torch.float32).to(
 | 
			
		||||
                                                               value_states.dtype)
 | 
			
		||||
            else:
 | 
			
		||||
                attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)
 | 
			
		||||
            attn_output = torch.matmul(attn_weights, value_states)
 | 
			
		||||
        attn_output = scaled_dot_product_attention(
 | 
			
		||||
            query_states, key_states, value_states,
 | 
			
		||||
            attention_mask, q_len == kv_seq_len
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    attn_output = attn_output.transpose(1, 2).contiguous()
 | 
			
		||||
    attn_output = attn_output.view(bsz, q_len, self.hidden_size)
 | 
			
		||||
| 
						 | 
				
			
			@ -247,20 +221,14 @@ def qwen_attention_forward_registered(
 | 
			
		|||
 | 
			
		||||
    # IPEX-LLM OPT: sdp
 | 
			
		||||
    attn_weights = None
 | 
			
		||||
    if not self.training and not hidden_states.requires_grad and \
 | 
			
		||||
            use_flash_attention(query_states, key_states, attention_mask):
 | 
			
		||||
 | 
			
		||||
    if use_flash_attention(query_states, key_states, attention_mask):
 | 
			
		||||
        attn_output = F.scaled_dot_product_attention(query_states.to(dtype=torch.float16),
 | 
			
		||||
                                                     key_states.to(dtype=torch.float16),
 | 
			
		||||
                                                     value_states.to(dtype=torch.float16),
 | 
			
		||||
                                                     is_causal=True).to(hidden_states.dtype)
 | 
			
		||||
    elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
 | 
			
		||||
        import xe_addons
 | 
			
		||||
        if use_quantize_kv:
 | 
			
		||||
            attn_output = xe_addons.sdp_fp8_causal(query_states, key_states, value_states, None)
 | 
			
		||||
        else:
 | 
			
		||||
            attn_output = xe_addons.sdp_causal(query_states, key_states, value_states, None)
 | 
			
		||||
    else:
 | 
			
		||||
        if q_len > 1:
 | 
			
		||||
        if q_len > 1 and q_len != kv_seq_len:
 | 
			
		||||
            causal_mask = registered_causal_mask[
 | 
			
		||||
                :, :, kv_seq_len - q_len:kv_seq_len, :kv_seq_len
 | 
			
		||||
            ]
 | 
			
		||||
| 
						 | 
				
			
			@ -272,29 +240,10 @@ def qwen_attention_forward_registered(
 | 
			
		|||
        else:
 | 
			
		||||
            attention_mask = None
 | 
			
		||||
 | 
			
		||||
        if use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
 | 
			
		||||
            import xe_addons
 | 
			
		||||
            if use_quantize_kv:
 | 
			
		||||
                attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states,
 | 
			
		||||
                                                attention_mask)
 | 
			
		||||
            else:
 | 
			
		||||
                attn_output = xe_addons.sdp(query_states, key_states, value_states,
 | 
			
		||||
                                            attention_mask)
 | 
			
		||||
        else:
 | 
			
		||||
            if use_quantize_kv:
 | 
			
		||||
                key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
 | 
			
		||||
                                                                query_states.dtype)
 | 
			
		||||
            attn_weights = torch.matmul(query_states,
 | 
			
		||||
                                        key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
 | 
			
		||||
            if attention_mask is not None:
 | 
			
		||||
                attn_weights = attn_weights + attention_mask
 | 
			
		||||
            if self.softmax_in_fp32:
 | 
			
		||||
                attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1,
 | 
			
		||||
                                                           dtype=torch.float32).to(
 | 
			
		||||
                                                               value_states.dtype)
 | 
			
		||||
            else:
 | 
			
		||||
                attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)
 | 
			
		||||
            attn_output = torch.matmul(attn_weights, value_states)
 | 
			
		||||
        attn_output = scaled_dot_product_attention(
 | 
			
		||||
            query_states, key_states, value_states,
 | 
			
		||||
            attention_mask, q_len == kv_seq_len
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    attn_output = attn_output.transpose(1, 2).contiguous()
 | 
			
		||||
    attn_output = attn_output.view(bsz, q_len, self.hidden_size)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -37,18 +37,16 @@
 | 
			
		|||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
import math
 | 
			
		||||
from typing import Optional, Tuple, List
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
from transformers.cache_utils import Cache
 | 
			
		||||
from transformers.models.stablelm.modeling_stablelm import repeat_kv
 | 
			
		||||
from transformers.models.stablelm.modeling_stablelm import StableLmAttention, StableLmModel
 | 
			
		||||
 | 
			
		||||
from ipex_llm.transformers.models.common import merge_qkv_base, attention_softmax
 | 
			
		||||
from ipex_llm.transformers.models.common import merge_qkv_base
 | 
			
		||||
from ipex_llm.transformers.models.common import scaled_dot_product_attention
 | 
			
		||||
from ipex_llm.transformers.models.utils import apply_rotary_pos_emb
 | 
			
		||||
from ipex_llm.transformers.models.utils import use_sdp, use_sdp_causal
 | 
			
		||||
from ipex_llm.transformers.models.utils import restore_fp8_kv_cache, use_quantize_kv_cache
 | 
			
		||||
from ipex_llm.transformers.models.utils import use_quantize_kv_cache
 | 
			
		||||
from ipex_llm.transformers.models.utils import should_use_fuse_rope
 | 
			
		||||
from ipex_llm.transformers.kv import DynamicFp8Cache, DynamicNormalCache
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -143,41 +141,10 @@ def stablelm_attention_forward(
 | 
			
		|||
 | 
			
		||||
    # IPEX-LLM OPT: sdp
 | 
			
		||||
    attn_weights = None
 | 
			
		||||
    if use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
 | 
			
		||||
        import xe_addons
 | 
			
		||||
        if isinstance(past_key_value, DynamicFp8Cache):
 | 
			
		||||
            attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states,
 | 
			
		||||
                                            attention_mask)
 | 
			
		||||
        else:
 | 
			
		||||
            attn_output = xe_addons.sdp(query_states, key_states, value_states,
 | 
			
		||||
                                        attention_mask)
 | 
			
		||||
    elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
 | 
			
		||||
        import xe_addons
 | 
			
		||||
        if isinstance(past_key_value, DynamicFp8Cache):
 | 
			
		||||
            attn_output = xe_addons.sdp_fp8_causal(query_states, key_states,
 | 
			
		||||
                                                   value_states, attention_mask)
 | 
			
		||||
        else:
 | 
			
		||||
            attn_output = xe_addons.sdp_causal(query_states, key_states,
 | 
			
		||||
                                               value_states, attention_mask)
 | 
			
		||||
    else:
 | 
			
		||||
        if isinstance(past_key_value, DynamicFp8Cache):
 | 
			
		||||
            key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
 | 
			
		||||
                                                            query_states.dtype)
 | 
			
		||||
 | 
			
		||||
        # repeat k/v heads if n_kv_heads < n_heads
 | 
			
		||||
        key_states = repeat_kv(key_states, self.num_key_value_groups)
 | 
			
		||||
        value_states = repeat_kv(value_states, self.num_key_value_groups)
 | 
			
		||||
 | 
			
		||||
        attn_weights = torch.matmul(query_states,
 | 
			
		||||
                                    key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
 | 
			
		||||
 | 
			
		||||
        if attention_mask is not None:
 | 
			
		||||
            attn_weights = attn_weights + attention_mask
 | 
			
		||||
 | 
			
		||||
        # upcast attention to fp32
 | 
			
		||||
        attn_weights = attention_softmax(attn_weights)
 | 
			
		||||
        attn_weights = self.attention_dropout(attn_weights)
 | 
			
		||||
        attn_output = torch.matmul(attn_weights, value_states)
 | 
			
		||||
    attn_output = scaled_dot_product_attention(
 | 
			
		||||
        query_states, key_states, value_states,
 | 
			
		||||
        attention_mask, q_len == kv_seq_len
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    attn_output = attn_output.transpose(1, 2).contiguous()
 | 
			
		||||
    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue