refactor chatglm2, internlm, stablelm and qwen (#12604)

This commit is contained in:
Yishuo Wang 2024-12-24 18:18:00 +08:00 committed by GitHub
parent 073f936c37
commit 4135b895b3
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
4 changed files with 53 additions and 279 deletions

View file

@ -18,17 +18,16 @@
#
import os
import math
import torch
from typing import Optional, Tuple
from transformers.modeling_outputs import BaseModelOutputWithPast
from ipex_llm.utils.common.log4Error import invalidInputError
from ipex_llm.transformers.models.utils import restore_fp8_kv_cache, update_past_key_value
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, use_sdp, use_sdp_causal
from ipex_llm.transformers.models.common import scaled_dot_product_attention
from ipex_llm.transformers.models.utils import update_past_key_value
from ipex_llm.transformers.models.utils import use_quantize_kv_cache
from ipex_llm.transformers.models.utils import should_use_fuse_rope, apply_rotary_pos_emb
from ipex_llm.transformers.models.utils import mlp_fusion_check, SILU
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, use_sdp, \
use_sdp_causal, should_use_compresskv, is_enough_kv_cache_room_4_36
from ipex_llm.transformers.models.utils import use_quantize_kv_cache
from ipex_llm.transformers.models.utils import should_use_compresskv, is_enough_kv_cache_room_4_36
from ipex_llm.transformers.kv import DynamicCompressCache, DynamicCompressFp8Cache
KV_CACHE_ALLOC_BLOCK_LENGTH = int(os.environ.get("KV_CACHE_ALLOC_BLOCK_LENGTH", 256))
@ -310,50 +309,10 @@ def chatglm2_attention_forward(
value_states.permute(2, 0, 1, 3)) if use_cache else None
# IPEX-LLM OPT: sdp
attn_weights = None
if use_sdp(q_len, kv_seq_len, head_dim, query_states):
import xe_addons
if use_compresskv and attention_mask is not None:
attention_mask = None
if use_quantize_kv:
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states, attention_mask)
else:
attn_output = xe_addons.sdp(query_states, key_states, value_states, attention_mask)
elif use_sdp_causal(q_len, kv_seq_len, head_dim, query_states, self.training):
import xe_addons
if use_quantize_kv:
attn_output = xe_addons.sdp_fp8_causal(query_states, key_states, value_states,
attention_mask)
else:
attn_output = xe_addons.sdp_causal(query_states, key_states, value_states,
attention_mask)
elif query_states.device.type == "cpu":
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, n_head // n_kv_head)
value_states = repeat_kv(value_states, n_head // n_kv_head)
if q_len == kv_seq_len:
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states, key_states, value_states, is_causal=True
)
else:
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states, key_states, value_states, attention_mask
)
else:
if use_quantize_kv:
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
query_states.dtype)
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, n_head // n_kv_head)
value_states = repeat_kv(value_states, n_head // n_kv_head)
attn_weights = torch.matmul(query_states,
key_states.transpose(2, 3)) / math.sqrt(head_dim)
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1,
dtype=torch.float32).to(value_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = scaled_dot_product_attention(
query_states, key_states, value_states,
attention_mask, q_len == kv_seq_len
)
# context_layer's shape: [bsz, n_head, seq_len, head_dim] -> [seq_len, bsz, n_head * head_dim]
attn_output = attn_output.permute(2, 0, 1, 3).contiguous().view(q_len, bsz, n_head * head_dim)
@ -541,29 +500,10 @@ def codegeex_attention_forward(
# =================
# Output. [sq, b, h]
# =================
context_layer = None
if use_sdp(q_len, kv_seq_len, head_dim, query_layer):
import xe_addons
context_layer = xe_addons.sdp(query_layer, key_layer, value_layer, attention_mask)
elif use_sdp_causal(q_len, kv_seq_len, head_dim, query_layer, self.training):
import xe_addons
context_layer = xe_addons.sdp_causal(query_layer, key_layer, value_layer, attention_mask)
else:
# repeat k/v heads if n_kv_heads < n_heads
key_layer = repeat_kv(key_layer, n_head // n_kv_head)
value_layer = repeat_kv(value_layer, n_head // n_kv_head)
if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]:
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer,
key_layer,
value_layer,
is_causal=True)
else:
if attention_mask is not None:
attention_mask = ~attention_mask
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer,
key_layer,
value_layer,
attention_mask)
context_layer = scaled_dot_product_attention(
query_layer, key_layer, value_layer,
attention_mask, q_len == kv_seq_len
)
context_layer = context_layer.permute(2, 0, 1, 3).contiguous().view(q_len,
bsz,

View file

@ -36,18 +36,16 @@
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch InternLM model."""
import math
from typing import Optional, Tuple, List
import torch
import torch.utils.checkpoint
from torch import nn
from ipex_llm.utils.common.log4Error import invalidInputError
from ipex_llm.transformers.models.common import merge_qkv_base, attention_softmax
from ipex_llm.transformers.models.common import merge_qkv_base
from ipex_llm.transformers.models.common import scaled_dot_product_attention
from ipex_llm.transformers.models.utils import should_use_fuse_rope, apply_rotary_pos_emb
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp8_kv_cache
from ipex_llm.transformers.models.utils import use_quantize_kv_cache
from ipex_llm.transformers.models.utils import update_past_key_value
from ipex_llm.transformers.models.utils import use_sdp, use_sdp_causal
from einops import rearrange
@ -98,35 +96,10 @@ def internlm_attention_forward(
# IPEX-LLM OPT: sdp
attn_weights = None
if use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
import xe_addons
if use_quantize_kv:
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states,
attention_mask)
else:
attn_output = xe_addons.sdp(query_states, key_states, value_states, attention_mask)
elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
import xe_addons
if use_quantize_kv:
attn_output = xe_addons.sdp_fp8_causal(query_states, key_states,
value_states, attention_mask)
else:
attn_output = xe_addons.sdp_causal(query_states, key_states,
value_states, attention_mask)
else:
if use_quantize_kv:
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
query_states.dtype)
attn_weights = torch.matmul(query_states,
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = attention_softmax(attn_weights)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = scaled_dot_product_attention(
query_states, key_states, value_states,
attention_mask, q_len == kv_seq_len
)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
@ -207,38 +180,10 @@ def internlm2_attention_forward(
# IPEX-LLM OPT: sdp
attn_weights = None
if use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
import xe_addons
if use_quantize_kv:
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states,
attention_mask)
else:
attn_output = xe_addons.sdp(query_states, key_states, value_states, attention_mask)
elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
import xe_addons
if use_quantize_kv:
attn_output = xe_addons.sdp_fp8_causal(query_states, key_states,
value_states, attention_mask)
else:
attn_output = xe_addons.sdp_causal(query_states, key_states,
value_states, attention_mask)
else:
if use_quantize_kv:
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
query_states.dtype)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(query_states,
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights,
dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = scaled_dot_product_attention(
query_states, key_states, value_states,
attention_mask, q_len == kv_seq_len
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
@ -409,38 +354,11 @@ def internlm_xcomposser2_attention_forward(
past_key_value = (key_states, value_states) if use_cache else None
# IPEX-LLM OPT: sdp
if use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
import xe_addons
if use_quantize_kv:
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states,
attention_mask)
else:
attn_output = xe_addons.sdp(query_states, key_states, value_states, attention_mask)
elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
import xe_addons
if use_quantize_kv:
attn_output = xe_addons.sdp_fp8_causal(query_states, key_states,
value_states, attention_mask)
else:
attn_output = xe_addons.sdp_causal(query_states, key_states,
value_states, attention_mask)
else:
if use_quantize_kv:
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
query_states.dtype)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(query_states,
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights,
dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
attn_weights = None
attn_output = scaled_dot_product_attention(
query_states, key_states, value_states,
attention_mask, q_len == kv_seq_len
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)

View file

@ -22,19 +22,19 @@
# LICENSE file in the root directory of this source tree.
#
import math
from typing import Optional, Tuple, Union, Callable, List
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from transformers.utils import logging
from ipex_llm.transformers.models.common import scaled_dot_product_attention
from ipex_llm.transformers.models.utils import update_past_key_value, should_use_fuse_rope
from ipex_llm.transformers.models.utils import restore_fp8_kv_cache, use_quantize_kv_cache
from ipex_llm.transformers.models.utils import use_quantize_kv_cache
from ipex_llm.transformers.models.utils import rotate_half, SILU
from ipex_llm.transformers.models.utils import mlp_fusion_check
from ipex_llm.transformers.models.utils import use_flash_attention, use_sdp, use_sdp_causal
from ipex_llm.utils.common import invalidInputError, invalidOperationError
from ipex_llm.transformers.models.utils import use_flash_attention
from ipex_llm.utils.common import invalidInputError
from transformers.modeling_outputs import BaseModelOutputWithPast
@ -118,20 +118,13 @@ def qwen_attention_forward(
# IPEX-LLM OPT: sdp
attn_weights = None
if not self.training and not hidden_states.requires_grad and \
use_flash_attention(query_states, key_states, attention_mask):
if use_flash_attention(query_states, key_states, attention_mask):
attn_output = F.scaled_dot_product_attention(query_states.to(dtype=torch.float16),
key_states.to(dtype=torch.float16),
value_states.to(dtype=torch.float16),
is_causal=True).to(hidden_states.dtype)
elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
import xe_addons
if use_quantize_kv:
attn_output = xe_addons.sdp_fp8_causal(query_states, key_states, value_states, None)
else:
attn_output = xe_addons.sdp_causal(query_states, key_states, value_states, None)
else:
if q_len > 1:
if q_len > 1 and q_len != kv_seq_len:
causal_mask = torch.tril(
torch.ones((kv_seq_len, kv_seq_len), dtype=torch.bool, device=query_states.device)
).view(1, 1, kv_seq_len, kv_seq_len)
@ -146,29 +139,10 @@ def qwen_attention_forward(
else:
attention_mask = None
if use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
import xe_addons
if use_quantize_kv:
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states,
attention_mask)
else:
attn_output = xe_addons.sdp(query_states, key_states, value_states,
attention_mask)
else:
if use_quantize_kv:
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
query_states.dtype)
attn_weights = torch.matmul(query_states,
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
if self.softmax_in_fp32:
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1,
dtype=torch.float32).to(
value_states.dtype)
else:
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = scaled_dot_product_attention(
query_states, key_states, value_states,
attention_mask, q_len == kv_seq_len
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
@ -247,20 +221,14 @@ def qwen_attention_forward_registered(
# IPEX-LLM OPT: sdp
attn_weights = None
if not self.training and not hidden_states.requires_grad and \
use_flash_attention(query_states, key_states, attention_mask):
if use_flash_attention(query_states, key_states, attention_mask):
attn_output = F.scaled_dot_product_attention(query_states.to(dtype=torch.float16),
key_states.to(dtype=torch.float16),
value_states.to(dtype=torch.float16),
is_causal=True).to(hidden_states.dtype)
elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
import xe_addons
if use_quantize_kv:
attn_output = xe_addons.sdp_fp8_causal(query_states, key_states, value_states, None)
else:
attn_output = xe_addons.sdp_causal(query_states, key_states, value_states, None)
else:
if q_len > 1:
if q_len > 1 and q_len != kv_seq_len:
causal_mask = registered_causal_mask[
:, :, kv_seq_len - q_len:kv_seq_len, :kv_seq_len
]
@ -272,29 +240,10 @@ def qwen_attention_forward_registered(
else:
attention_mask = None
if use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
import xe_addons
if use_quantize_kv:
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states,
attention_mask)
else:
attn_output = xe_addons.sdp(query_states, key_states, value_states,
attention_mask)
else:
if use_quantize_kv:
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
query_states.dtype)
attn_weights = torch.matmul(query_states,
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
if self.softmax_in_fp32:
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1,
dtype=torch.float32).to(
value_states.dtype)
else:
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = scaled_dot_product_attention(
query_states, key_states, value_states,
attention_mask, q_len == kv_seq_len
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, self.hidden_size)

View file

@ -37,18 +37,16 @@
# limitations under the License.
#
import math
from typing import Optional, Tuple, List
import torch
from transformers.cache_utils import Cache
from transformers.models.stablelm.modeling_stablelm import repeat_kv
from transformers.models.stablelm.modeling_stablelm import StableLmAttention, StableLmModel
from ipex_llm.transformers.models.common import merge_qkv_base, attention_softmax
from ipex_llm.transformers.models.common import merge_qkv_base
from ipex_llm.transformers.models.common import scaled_dot_product_attention
from ipex_llm.transformers.models.utils import apply_rotary_pos_emb
from ipex_llm.transformers.models.utils import use_sdp, use_sdp_causal
from ipex_llm.transformers.models.utils import restore_fp8_kv_cache, use_quantize_kv_cache
from ipex_llm.transformers.models.utils import use_quantize_kv_cache
from ipex_llm.transformers.models.utils import should_use_fuse_rope
from ipex_llm.transformers.kv import DynamicFp8Cache, DynamicNormalCache
@ -143,41 +141,10 @@ def stablelm_attention_forward(
# IPEX-LLM OPT: sdp
attn_weights = None
if use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
import xe_addons
if isinstance(past_key_value, DynamicFp8Cache):
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states,
attention_mask)
else:
attn_output = xe_addons.sdp(query_states, key_states, value_states,
attention_mask)
elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
import xe_addons
if isinstance(past_key_value, DynamicFp8Cache):
attn_output = xe_addons.sdp_fp8_causal(query_states, key_states,
value_states, attention_mask)
else:
attn_output = xe_addons.sdp_causal(query_states, key_states,
value_states, attention_mask)
else:
if isinstance(past_key_value, DynamicFp8Cache):
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
query_states.dtype)
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(query_states,
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = attention_softmax(attn_weights)
attn_weights = self.attention_dropout(attn_weights)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = scaled_dot_product_attention(
query_states, key_states, value_states,
attention_mask, q_len == kv_seq_len
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)