refactor mistral and phi3 (#12605)
This commit is contained in:
		
							parent
							
								
									45f8f72a28
								
							
						
					
					
						commit
						073f936c37
					
				
					 5 changed files with 99 additions and 1367 deletions
				
			
		| 
						 | 
				
			
			@ -1031,6 +1031,9 @@ def _optimize_pre(model, qtype=None):
 | 
			
		|||
    elif model.config.model_type == "mllama":
 | 
			
		||||
        from ipex_llm.transformers.models.mllama import merge_qkv
 | 
			
		||||
        model.apply(merge_qkv)
 | 
			
		||||
    elif model.config.model_type == "mistral":
 | 
			
		||||
        from ipex_llm.transformers.models.mistral import merge_qkv
 | 
			
		||||
        model.apply(merge_qkv)
 | 
			
		||||
    elif model.config.model_type == "minicpm":
 | 
			
		||||
        from ipex_llm.transformers.models.minicpm import merge_qkv, apply_residual_scale
 | 
			
		||||
        model.apply(merge_qkv)
 | 
			
		||||
| 
						 | 
				
			
			@ -1901,43 +1904,17 @@ def _optimize_post(model, lightweight_bmm=False):
 | 
			
		|||
        else:
 | 
			
		||||
            modeling_module_name = model.__class__.__module__
 | 
			
		||||
            module = importlib.import_module(modeling_module_name)
 | 
			
		||||
            if version.parse(trans_version) >= version.parse("4.36.0"):
 | 
			
		||||
                from ipex_llm.transformers.models.mistral import mistral_model_forward_4_36
 | 
			
		||||
                if version.parse(trans_version) >= version.parse("4.39.0"):
 | 
			
		||||
                    from ipex_llm.transformers.models.mistral import \
 | 
			
		||||
                        mistral_attention_forward_4_39
 | 
			
		||||
                    convert_forward(model,
 | 
			
		||||
                                    module.MistralAttention,
 | 
			
		||||
                                    mistral_attention_forward_4_39
 | 
			
		||||
                                    )
 | 
			
		||||
                else:
 | 
			
		||||
                    from ipex_llm.transformers.models.mistral import mistral_attention_forward_4_36
 | 
			
		||||
                    convert_forward(model,
 | 
			
		||||
                                    module.MistralAttention,
 | 
			
		||||
                                    mistral_attention_forward_4_36
 | 
			
		||||
                                    )
 | 
			
		||||
                convert_forward(model,
 | 
			
		||||
                                module.MistralModel,
 | 
			
		||||
                                mistral_model_forward_4_36
 | 
			
		||||
                                )
 | 
			
		||||
                convert_forward(model,
 | 
			
		||||
                                module.MistralRMSNorm,
 | 
			
		||||
                                llama_rms_norm_forward)
 | 
			
		||||
                convert_forward(model,
 | 
			
		||||
                                module.MistralMLP,
 | 
			
		||||
                                llama_mlp_forward)
 | 
			
		||||
            else:
 | 
			
		||||
                from ipex_llm.transformers.models.mistral import mistral_attention_forward
 | 
			
		||||
                convert_forward(model,
 | 
			
		||||
                                module.MistralAttention,
 | 
			
		||||
                                mistral_attention_forward
 | 
			
		||||
                                )
 | 
			
		||||
                convert_forward(model,
 | 
			
		||||
                                module.MistralRMSNorm,
 | 
			
		||||
                                llama_rms_norm_forward)
 | 
			
		||||
                convert_forward(model,
 | 
			
		||||
                                module.MistralMLP,
 | 
			
		||||
                                llama_mlp_forward)
 | 
			
		||||
 | 
			
		||||
            from ipex_llm.transformers.models.mistral import mistral_model_forward
 | 
			
		||||
            from ipex_llm.transformers.models.mistral import mistral_attention_forward
 | 
			
		||||
            from ipex_llm.transformers.models.common import rms_norm_forward
 | 
			
		||||
            from ipex_llm.transformers.models.common import mlp_silu_forward
 | 
			
		||||
 | 
			
		||||
            convert_forward(model, module.MistralModel, mistral_model_forward)
 | 
			
		||||
            convert_forward(model, module.MistralAttention, mistral_attention_forward)
 | 
			
		||||
            convert_forward(model, module.MistralSdpaAttention, mistral_attention_forward)
 | 
			
		||||
            convert_forward(model, module.MistralRMSNorm, rms_norm_forward)
 | 
			
		||||
            convert_forward(model, module.MistralMLP, mlp_silu_forward)
 | 
			
		||||
    elif model.config.model_type == "gemma":
 | 
			
		||||
        modeling_module_name = model.__class__.__module__
 | 
			
		||||
        module = importlib.import_module(modeling_module_name)
 | 
			
		||||
| 
						 | 
				
			
			@ -2078,8 +2055,8 @@ def _optimize_post(model, lightweight_bmm=False):
 | 
			
		|||
        convert_forward(model, module.Phi3Attention, attention_forward)
 | 
			
		||||
        from ipex_llm.transformers.models.phi3 import mlp_forward
 | 
			
		||||
        convert_forward(model, module.Phi3MLP, mlp_forward)
 | 
			
		||||
        from ipex_llm.transformers.models.phi3 import phi3_rms_norm_forward
 | 
			
		||||
        convert_forward(model, module.Phi3RMSNorm, phi3_rms_norm_forward)
 | 
			
		||||
        from ipex_llm.transformers.models.common import rms_norm_forward
 | 
			
		||||
        convert_forward(model, module.Phi3RMSNorm, rms_norm_forward)
 | 
			
		||||
        if model.config.model_type == "phi3":
 | 
			
		||||
            from ipex_llm.transformers.models.phi3 import phi3_model_forward_wrapper
 | 
			
		||||
            model_forward = phi3_model_forward_wrapper(module.Phi3Model.forward)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -281,8 +281,13 @@ def scaled_dot_product_attention(query: torch.Tensor, key: torch.Tensor,
 | 
			
		|||
            key = repeat_kv(key, n_heads // n_kv_heads)
 | 
			
		||||
            value = repeat_kv(value, n_heads // n_kv_heads)
 | 
			
		||||
 | 
			
		||||
        attn_output = torch.nn.functional.scaled_dot_product_attention(
 | 
			
		||||
            query, key, value, mask, is_causal=is_causal, scale=scale
 | 
			
		||||
        )
 | 
			
		||||
        if is_causal and mask is None:
 | 
			
		||||
            attn_output = torch.nn.functional.scaled_dot_product_attention(
 | 
			
		||||
                query, key, value, is_causal=is_causal, scale=scale
 | 
			
		||||
            )
 | 
			
		||||
        else:
 | 
			
		||||
            attn_output = torch.nn.functional.scaled_dot_product_attention(
 | 
			
		||||
                query, key, value, mask, scale=scale
 | 
			
		||||
            )
 | 
			
		||||
        attn_output = attn_output.to(dtype)    # workaround ipex 2.1's bug
 | 
			
		||||
        return attn_output
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
										
											
												File diff suppressed because it is too large
												Load diff
											
										
									
								
							| 
						 | 
				
			
			@ -35,12 +35,12 @@ import os
 | 
			
		|||
import math
 | 
			
		||||
import torch
 | 
			
		||||
import warnings
 | 
			
		||||
from torch import nn
 | 
			
		||||
 | 
			
		||||
from ipex_llm.transformers.models.common import attention_softmax
 | 
			
		||||
from ipex_llm.transformers.models.common import scaled_dot_product_attention
 | 
			
		||||
from ipex_llm.transformers.models.utils import should_use_fuse_rope, rotate_half
 | 
			
		||||
from ipex_llm.transformers.models.utils import mlp_fusion_check, SILU
 | 
			
		||||
from ipex_llm.transformers.models.utils import use_sdp, use_sdp_causal, get_compresskv_attn_mask
 | 
			
		||||
from ipex_llm.transformers.models.utils import use_sdp, use_sdp_causal
 | 
			
		||||
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp8_kv_cache
 | 
			
		||||
from ipex_llm.transformers.models.utils import should_use_compresskv, is_enough_kv_cache_room_4_36
 | 
			
		||||
from ipex_llm.transformers.kv import DynamicNormalCache, DynamicFp8Cache, \
 | 
			
		||||
| 
						 | 
				
			
			@ -149,28 +149,20 @@ def attention_forward(
 | 
			
		|||
            key_states, value_states = past_key_value.update(key_states, value_states,
 | 
			
		||||
                                                             self.layer_idx, None)
 | 
			
		||||
 | 
			
		||||
    attn_weights = None
 | 
			
		||||
    if use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
 | 
			
		||||
        # [CompressKV]
 | 
			
		||||
        if use_compresskv:
 | 
			
		||||
            attention_mask = get_compresskv_attn_mask(key_states, attention_mask)
 | 
			
		||||
        import xe_addons
 | 
			
		||||
        if use_quantizekv:
 | 
			
		||||
            attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states,
 | 
			
		||||
                                            attention_mask)
 | 
			
		||||
        else:
 | 
			
		||||
            attn_output = xe_addons.sdp(query_states, key_states, value_states,
 | 
			
		||||
                                        attention_mask)
 | 
			
		||||
        attn_output = scaled_dot_product_attention(
 | 
			
		||||
            query_states, key_states, value_states,
 | 
			
		||||
            attention_mask, False
 | 
			
		||||
        )
 | 
			
		||||
    elif (
 | 
			
		||||
        use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training)
 | 
			
		||||
        and os.environ.get("IPEX_LLM_LOW_MEM", "0") == "1"
 | 
			
		||||
    ):
 | 
			
		||||
        import xe_addons
 | 
			
		||||
        if isinstance(past_key_value, DynamicFp8Cache):
 | 
			
		||||
            attn_output = xe_addons.sdp_fp8_causal(query_states, key_states,
 | 
			
		||||
                                                   value_states, attention_mask)
 | 
			
		||||
        else:
 | 
			
		||||
            attn_output = xe_addons.sdp_causal(query_states, key_states,
 | 
			
		||||
                                               value_states, attention_mask)
 | 
			
		||||
        attn_output = scaled_dot_product_attention(
 | 
			
		||||
            query_states, key_states, value_states,
 | 
			
		||||
            attention_mask, True
 | 
			
		||||
        )
 | 
			
		||||
    else:
 | 
			
		||||
        if use_quantizekv:
 | 
			
		||||
            key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
 | 
			
		||||
| 
						 | 
				
			
			@ -334,17 +326,3 @@ def phi3v_model_forward_wrapper(origin_model_forward):
 | 
			
		|||
            return_dict=return_dict,
 | 
			
		||||
        )
 | 
			
		||||
    return model_forward
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def phi3_rms_norm_forward(self, hidden_states):
 | 
			
		||||
    if hidden_states.device.type == "xpu" and not (self.training and hidden_states.requires_grad):
 | 
			
		||||
        import xe_addons
 | 
			
		||||
        x_2d = hidden_states.reshape(-1, hidden_states.size(-1)).contiguous()
 | 
			
		||||
        output = xe_addons.rms_norm(self.weight, x_2d, self.variance_epsilon)
 | 
			
		||||
        return output.reshape(hidden_states.shape)
 | 
			
		||||
 | 
			
		||||
    input_dtype = hidden_states.dtype
 | 
			
		||||
    hidden_states = hidden_states.to(torch.float32)
 | 
			
		||||
    variance = hidden_states.pow(2).mean(-1, keepdim=True)
 | 
			
		||||
    hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
 | 
			
		||||
    return self.weight * hidden_states.to(input_dtype)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -556,9 +556,6 @@ def qwen2_attention_forward(
 | 
			
		|||
    if past_key_value is not None:
 | 
			
		||||
        kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
 | 
			
		||||
 | 
			
		||||
    if attention_mask is not None:
 | 
			
		||||
        attention_mask = attention_mask[:, :, :, :kv_seq_len]
 | 
			
		||||
 | 
			
		||||
    if should_use_fuse_rope(hidden_states, position_ids, self.training):
 | 
			
		||||
        import xe_addons
 | 
			
		||||
        xe_addons.rotary_half_inplaced(self.rotary_emb.inv_freq, position_ids,
 | 
			
		||||
| 
						 | 
				
			
			@ -584,6 +581,8 @@ def qwen2_attention_forward(
 | 
			
		|||
 | 
			
		||||
    attn_weights = None
 | 
			
		||||
    if use_flash_attention(query_states, key_states, attention_mask):
 | 
			
		||||
        if attention_mask is not None:
 | 
			
		||||
            attention_mask = attention_mask[:, :, :, :kv_seq_len]
 | 
			
		||||
        # repeat k/v heads if n_kv_heads < n_heads
 | 
			
		||||
        key_states = repeat_kv(key_states, self.num_key_value_groups)
 | 
			
		||||
        value_states = repeat_kv(value_states, self.num_key_value_groups)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue