refactor mistral and phi3 (#12605)

This commit is contained in:
Yishuo Wang 2024-12-24 17:52:32 +08:00 committed by GitHub
parent 45f8f72a28
commit 073f936c37
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
5 changed files with 99 additions and 1367 deletions

View file

@ -1031,6 +1031,9 @@ def _optimize_pre(model, qtype=None):
elif model.config.model_type == "mllama":
from ipex_llm.transformers.models.mllama import merge_qkv
model.apply(merge_qkv)
elif model.config.model_type == "mistral":
from ipex_llm.transformers.models.mistral import merge_qkv
model.apply(merge_qkv)
elif model.config.model_type == "minicpm":
from ipex_llm.transformers.models.minicpm import merge_qkv, apply_residual_scale
model.apply(merge_qkv)
@ -1901,43 +1904,17 @@ def _optimize_post(model, lightweight_bmm=False):
else:
modeling_module_name = model.__class__.__module__
module = importlib.import_module(modeling_module_name)
if version.parse(trans_version) >= version.parse("4.36.0"):
from ipex_llm.transformers.models.mistral import mistral_model_forward_4_36
if version.parse(trans_version) >= version.parse("4.39.0"):
from ipex_llm.transformers.models.mistral import \
mistral_attention_forward_4_39
convert_forward(model,
module.MistralAttention,
mistral_attention_forward_4_39
)
else:
from ipex_llm.transformers.models.mistral import mistral_attention_forward_4_36
convert_forward(model,
module.MistralAttention,
mistral_attention_forward_4_36
)
convert_forward(model,
module.MistralModel,
mistral_model_forward_4_36
)
convert_forward(model,
module.MistralRMSNorm,
llama_rms_norm_forward)
convert_forward(model,
module.MistralMLP,
llama_mlp_forward)
else:
from ipex_llm.transformers.models.mistral import mistral_attention_forward
convert_forward(model,
module.MistralAttention,
mistral_attention_forward
)
convert_forward(model,
module.MistralRMSNorm,
llama_rms_norm_forward)
convert_forward(model,
module.MistralMLP,
llama_mlp_forward)
from ipex_llm.transformers.models.mistral import mistral_model_forward
from ipex_llm.transformers.models.mistral import mistral_attention_forward
from ipex_llm.transformers.models.common import rms_norm_forward
from ipex_llm.transformers.models.common import mlp_silu_forward
convert_forward(model, module.MistralModel, mistral_model_forward)
convert_forward(model, module.MistralAttention, mistral_attention_forward)
convert_forward(model, module.MistralSdpaAttention, mistral_attention_forward)
convert_forward(model, module.MistralRMSNorm, rms_norm_forward)
convert_forward(model, module.MistralMLP, mlp_silu_forward)
elif model.config.model_type == "gemma":
modeling_module_name = model.__class__.__module__
module = importlib.import_module(modeling_module_name)
@ -2078,8 +2055,8 @@ def _optimize_post(model, lightweight_bmm=False):
convert_forward(model, module.Phi3Attention, attention_forward)
from ipex_llm.transformers.models.phi3 import mlp_forward
convert_forward(model, module.Phi3MLP, mlp_forward)
from ipex_llm.transformers.models.phi3 import phi3_rms_norm_forward
convert_forward(model, module.Phi3RMSNorm, phi3_rms_norm_forward)
from ipex_llm.transformers.models.common import rms_norm_forward
convert_forward(model, module.Phi3RMSNorm, rms_norm_forward)
if model.config.model_type == "phi3":
from ipex_llm.transformers.models.phi3 import phi3_model_forward_wrapper
model_forward = phi3_model_forward_wrapper(module.Phi3Model.forward)

View file

@ -281,8 +281,13 @@ def scaled_dot_product_attention(query: torch.Tensor, key: torch.Tensor,
key = repeat_kv(key, n_heads // n_kv_heads)
value = repeat_kv(value, n_heads // n_kv_heads)
attn_output = torch.nn.functional.scaled_dot_product_attention(
query, key, value, mask, is_causal=is_causal, scale=scale
)
if is_causal and mask is None:
attn_output = torch.nn.functional.scaled_dot_product_attention(
query, key, value, is_causal=is_causal, scale=scale
)
else:
attn_output = torch.nn.functional.scaled_dot_product_attention(
query, key, value, mask, scale=scale
)
attn_output = attn_output.to(dtype) # workaround ipex 2.1's bug
return attn_output

File diff suppressed because it is too large Load diff

View file

@ -35,12 +35,12 @@ import os
import math
import torch
import warnings
from torch import nn
from ipex_llm.transformers.models.common import attention_softmax
from ipex_llm.transformers.models.common import scaled_dot_product_attention
from ipex_llm.transformers.models.utils import should_use_fuse_rope, rotate_half
from ipex_llm.transformers.models.utils import mlp_fusion_check, SILU
from ipex_llm.transformers.models.utils import use_sdp, use_sdp_causal, get_compresskv_attn_mask
from ipex_llm.transformers.models.utils import use_sdp, use_sdp_causal
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp8_kv_cache
from ipex_llm.transformers.models.utils import should_use_compresskv, is_enough_kv_cache_room_4_36
from ipex_llm.transformers.kv import DynamicNormalCache, DynamicFp8Cache, \
@ -149,28 +149,20 @@ def attention_forward(
key_states, value_states = past_key_value.update(key_states, value_states,
self.layer_idx, None)
attn_weights = None
if use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
# [CompressKV]
if use_compresskv:
attention_mask = get_compresskv_attn_mask(key_states, attention_mask)
import xe_addons
if use_quantizekv:
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states,
attention_mask)
else:
attn_output = xe_addons.sdp(query_states, key_states, value_states,
attention_mask)
attn_output = scaled_dot_product_attention(
query_states, key_states, value_states,
attention_mask, False
)
elif (
use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training)
and os.environ.get("IPEX_LLM_LOW_MEM", "0") == "1"
):
import xe_addons
if isinstance(past_key_value, DynamicFp8Cache):
attn_output = xe_addons.sdp_fp8_causal(query_states, key_states,
value_states, attention_mask)
else:
attn_output = xe_addons.sdp_causal(query_states, key_states,
value_states, attention_mask)
attn_output = scaled_dot_product_attention(
query_states, key_states, value_states,
attention_mask, True
)
else:
if use_quantizekv:
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
@ -334,17 +326,3 @@ def phi3v_model_forward_wrapper(origin_model_forward):
return_dict=return_dict,
)
return model_forward
def phi3_rms_norm_forward(self, hidden_states):
if hidden_states.device.type == "xpu" and not (self.training and hidden_states.requires_grad):
import xe_addons
x_2d = hidden_states.reshape(-1, hidden_states.size(-1)).contiguous()
output = xe_addons.rms_norm(self.weight, x_2d, self.variance_epsilon)
return output.reshape(hidden_states.shape)
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)

View file

@ -556,9 +556,6 @@ def qwen2_attention_forward(
if past_key_value is not None:
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
if attention_mask is not None:
attention_mask = attention_mask[:, :, :, :kv_seq_len]
if should_use_fuse_rope(hidden_states, position_ids, self.training):
import xe_addons
xe_addons.rotary_half_inplaced(self.rotary_emb.inv_freq, position_ids,
@ -584,6 +581,8 @@ def qwen2_attention_forward(
attn_weights = None
if use_flash_attention(query_states, key_states, attention_mask):
if attention_mask is not None:
attention_mask = attention_mask[:, :, :, :kv_seq_len]
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)