[LLM] Enable kv_cache optimization for Qwen2 on transformers-v4.37.0 (#10131)
* add support for kv_cache optimization on transformers-v4.37.0 * enable attention forward * style fix * disable rotary for now
This commit is contained in:
parent
063dc145ac
commit
3f79128ed7
2 changed files with 49 additions and 23 deletions
|
|
@ -897,10 +897,10 @@ def _optimize_post(model, lightweight_bmm=False):
|
|||
# TODO: add these optimization back
|
||||
# RMSNorm and rotray embedding are disabled for now
|
||||
# as they lead to obvious performance drop for Qwen 1.5
|
||||
# convert_forward(model,
|
||||
# module.Qwen2Attention,
|
||||
# qwen2_attention_forward
|
||||
# )
|
||||
convert_forward(model,
|
||||
module.Qwen2Attention,
|
||||
qwen2_attention_forward
|
||||
)
|
||||
# convert_forward(model,
|
||||
# module.Qwen2RMSNorm,
|
||||
# llama_rms_norm_forward)
|
||||
|
|
|
|||
|
|
@ -38,18 +38,22 @@
|
|||
#
|
||||
|
||||
import math
|
||||
from typing import TYPE_CHECKING, Optional, Tuple, Union, Callable, List
|
||||
import warnings
|
||||
from typing import TYPE_CHECKING, Optional, Tuple, Union, Callable, List
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from bigdl.llm.transformers.models.llama import repeat_kv
|
||||
from bigdl.llm.transformers.models.utils import extend_kv_cache, append_kv_cache
|
||||
from bigdl.llm.transformers.models.utils import apply_rotary_pos_emb, \
|
||||
apply_rotary_pos_emb_no_cache_xpu
|
||||
apply_rotary_pos_emb_no_cache_xpu, is_enough_kv_cache_room_4_36
|
||||
from bigdl.llm.utils.common import invalidInputError
|
||||
|
||||
|
||||
KV_CACHE_ALLOC_BLOCK_LENGTH = 256
|
||||
|
||||
|
||||
def should_use_fuse_rope(self, query_states, position_ids):
|
||||
use_fuse_rope = query_states.device.type == "xpu"
|
||||
use_fuse_rope = use_fuse_rope and not (self.training and query_states.requires_grad)
|
||||
|
|
@ -76,6 +80,9 @@ def qwen2_attention_forward(
|
|||
"Please make sure use `attention_mask` instead.`"
|
||||
)
|
||||
bsz, q_len, _ = hidden_states.size()
|
||||
device = hidden_states.device
|
||||
|
||||
enough_kv_room = is_enough_kv_cache_room_4_36(past_key_value, self.layer_idx)
|
||||
|
||||
query_states = self.q_proj(hidden_states)
|
||||
key_states = self.k_proj(hidden_states)
|
||||
|
|
@ -98,25 +105,44 @@ def qwen2_attention_forward(
|
|||
"please make sure to initialize the attention class with a layer index."
|
||||
)
|
||||
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
||||
|
||||
if use_fuse_rope:
|
||||
query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states,
|
||||
key_states,
|
||||
position_ids,
|
||||
"qwen2")
|
||||
else:
|
||||
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
||||
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
|
||||
cos, sin, position_ids, "qwen2")
|
||||
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
||||
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
||||
|
||||
if past_key_value is not None:
|
||||
if use_fuse_rope:
|
||||
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
||||
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
||||
key_states, value_states = past_key_value.update(key_states,
|
||||
value_states,
|
||||
self.layer_idx,
|
||||
cache_kwargs)
|
||||
# update the number of seen tokens
|
||||
if self.layer_idx == 0:
|
||||
past_key_value.seen_tokens += key_states.shape[-2]
|
||||
|
||||
if len(past_key_value.key_cache) <= self.layer_idx:
|
||||
past_key_value.key_cache.append(key_states)
|
||||
past_key_value.value_cache.append(value_states)
|
||||
else:
|
||||
cache_k = past_key_value.key_cache[self.layer_idx]
|
||||
cache_v = past_key_value.value_cache[self.layer_idx]
|
||||
|
||||
if not enough_kv_room:
|
||||
# allocate new
|
||||
new_c_k, new_c_v = extend_kv_cache(bsz,
|
||||
self.num_key_value_heads, # Support GQA
|
||||
self.head_dim,
|
||||
cache_k.size(2),
|
||||
kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
|
||||
dtype=cache_k.dtype,
|
||||
device=device)
|
||||
|
||||
new_c_k[:] = cache_k
|
||||
new_c_v[:] = cache_v
|
||||
cache_k = new_c_k
|
||||
cache_v = new_c_v
|
||||
|
||||
key_states, value_states = append_kv_cache(cache_k,
|
||||
cache_v,
|
||||
key_states,
|
||||
value_states)
|
||||
|
||||
# update past_key_value
|
||||
past_key_value.key_cache[self.layer_idx] = key_states
|
||||
past_key_value.value_cache[self.layer_idx] = value_states
|
||||
|
||||
# repeat k/v heads if n_kv_heads < n_heads
|
||||
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||||
|
|
|
|||
Loading…
Reference in a new issue