diff --git a/python/llm/src/bigdl/llm/transformers/convert.py b/python/llm/src/bigdl/llm/transformers/convert.py index 0e7576d0..d2dfa651 100644 --- a/python/llm/src/bigdl/llm/transformers/convert.py +++ b/python/llm/src/bigdl/llm/transformers/convert.py @@ -897,10 +897,10 @@ def _optimize_post(model, lightweight_bmm=False): # TODO: add these optimization back # RMSNorm and rotray embedding are disabled for now # as they lead to obvious performance drop for Qwen 1.5 - # convert_forward(model, - # module.Qwen2Attention, - # qwen2_attention_forward - # ) + convert_forward(model, + module.Qwen2Attention, + qwen2_attention_forward + ) # convert_forward(model, # module.Qwen2RMSNorm, # llama_rms_norm_forward) diff --git a/python/llm/src/bigdl/llm/transformers/models/qwen2.py b/python/llm/src/bigdl/llm/transformers/models/qwen2.py index a25a7b55..9d9a872e 100644 --- a/python/llm/src/bigdl/llm/transformers/models/qwen2.py +++ b/python/llm/src/bigdl/llm/transformers/models/qwen2.py @@ -38,18 +38,22 @@ # import math -from typing import TYPE_CHECKING, Optional, Tuple, Union, Callable, List import warnings +from typing import TYPE_CHECKING, Optional, Tuple, Union, Callable, List import torch import torch.nn as nn from bigdl.llm.transformers.models.llama import repeat_kv +from bigdl.llm.transformers.models.utils import extend_kv_cache, append_kv_cache from bigdl.llm.transformers.models.utils import apply_rotary_pos_emb, \ - apply_rotary_pos_emb_no_cache_xpu + apply_rotary_pos_emb_no_cache_xpu, is_enough_kv_cache_room_4_36 from bigdl.llm.utils.common import invalidInputError +KV_CACHE_ALLOC_BLOCK_LENGTH = 256 + + def should_use_fuse_rope(self, query_states, position_ids): use_fuse_rope = query_states.device.type == "xpu" use_fuse_rope = use_fuse_rope and not (self.training and query_states.requires_grad) @@ -76,6 +80,9 @@ def qwen2_attention_forward( "Please make sure use `attention_mask` instead.`" ) bsz, q_len, _ = hidden_states.size() + device = hidden_states.device + + enough_kv_room = is_enough_kv_cache_room_4_36(past_key_value, self.layer_idx) query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) @@ -98,25 +105,44 @@ def qwen2_attention_forward( "please make sure to initialize the attention class with a layer index." ) kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) - - if use_fuse_rope: - query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states, - key_states, - position_ids, - "qwen2") - else: - cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) - query_states, key_states = apply_rotary_pos_emb(query_states, key_states, - cos, sin, position_ids, "qwen2") + cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) + query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) if past_key_value is not None: - if use_fuse_rope: - cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) - cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models - key_states, value_states = past_key_value.update(key_states, - value_states, - self.layer_idx, - cache_kwargs) + # update the number of seen tokens + if self.layer_idx == 0: + past_key_value.seen_tokens += key_states.shape[-2] + + if len(past_key_value.key_cache) <= self.layer_idx: + past_key_value.key_cache.append(key_states) + past_key_value.value_cache.append(value_states) + else: + cache_k = past_key_value.key_cache[self.layer_idx] + cache_v = past_key_value.value_cache[self.layer_idx] + + if not enough_kv_room: + # allocate new + new_c_k, new_c_v = extend_kv_cache(bsz, + self.num_key_value_heads, # Support GQA + self.head_dim, + cache_k.size(2), + kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH, + dtype=cache_k.dtype, + device=device) + + new_c_k[:] = cache_k + new_c_v[:] = cache_v + cache_k = new_c_k + cache_v = new_c_v + + key_states, value_states = append_kv_cache(cache_k, + cache_v, + key_states, + value_states) + + # update past_key_value + past_key_value.key_cache[self.layer_idx] = key_states + past_key_value.value_cache[self.layer_idx] = value_states # repeat k/v heads if n_kv_heads < n_heads key_states = repeat_kv(key_states, self.num_key_value_groups)