[LLM] Enable kv_cache optimization for Qwen2 on transformers-v4.37.0 (#10131)
* add support for kv_cache optimization on transformers-v4.37.0 * enable attention forward * style fix * disable rotary for now
This commit is contained in:
		
							parent
							
								
									063dc145ac
								
							
						
					
					
						commit
						3f79128ed7
					
				
					 2 changed files with 49 additions and 23 deletions
				
			
		| 
						 | 
				
			
			@ -897,10 +897,10 @@ def _optimize_post(model, lightweight_bmm=False):
 | 
			
		|||
        # TODO: add these optimization back
 | 
			
		||||
        # RMSNorm and rotray embedding are disabled for now
 | 
			
		||||
        # as they lead to obvious performance drop for Qwen 1.5
 | 
			
		||||
        # convert_forward(model,
 | 
			
		||||
        #                 module.Qwen2Attention,
 | 
			
		||||
        #                 qwen2_attention_forward
 | 
			
		||||
        #                 )
 | 
			
		||||
        convert_forward(model,
 | 
			
		||||
                        module.Qwen2Attention,
 | 
			
		||||
                        qwen2_attention_forward
 | 
			
		||||
                        )
 | 
			
		||||
        # convert_forward(model,
 | 
			
		||||
        #                 module.Qwen2RMSNorm,
 | 
			
		||||
        #                 llama_rms_norm_forward)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -38,18 +38,22 @@
 | 
			
		|||
#
 | 
			
		||||
 | 
			
		||||
import math
 | 
			
		||||
from typing import TYPE_CHECKING, Optional, Tuple, Union, Callable, List
 | 
			
		||||
import warnings
 | 
			
		||||
from typing import TYPE_CHECKING, Optional, Tuple, Union, Callable, List
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
import torch.nn as nn
 | 
			
		||||
 | 
			
		||||
from bigdl.llm.transformers.models.llama import repeat_kv
 | 
			
		||||
from bigdl.llm.transformers.models.utils import extend_kv_cache, append_kv_cache
 | 
			
		||||
from bigdl.llm.transformers.models.utils import apply_rotary_pos_emb, \
 | 
			
		||||
    apply_rotary_pos_emb_no_cache_xpu
 | 
			
		||||
    apply_rotary_pos_emb_no_cache_xpu, is_enough_kv_cache_room_4_36
 | 
			
		||||
from bigdl.llm.utils.common import invalidInputError
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
KV_CACHE_ALLOC_BLOCK_LENGTH = 256
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def should_use_fuse_rope(self, query_states, position_ids):
 | 
			
		||||
    use_fuse_rope = query_states.device.type == "xpu"
 | 
			
		||||
    use_fuse_rope = use_fuse_rope and not (self.training and query_states.requires_grad)
 | 
			
		||||
| 
						 | 
				
			
			@ -76,6 +80,9 @@ def qwen2_attention_forward(
 | 
			
		|||
            "Please make sure use `attention_mask` instead.`"
 | 
			
		||||
        )
 | 
			
		||||
    bsz, q_len, _ = hidden_states.size()
 | 
			
		||||
    device = hidden_states.device
 | 
			
		||||
 | 
			
		||||
    enough_kv_room = is_enough_kv_cache_room_4_36(past_key_value, self.layer_idx)
 | 
			
		||||
 | 
			
		||||
    query_states = self.q_proj(hidden_states)
 | 
			
		||||
    key_states = self.k_proj(hidden_states)
 | 
			
		||||
| 
						 | 
				
			
			@ -98,25 +105,44 @@ def qwen2_attention_forward(
 | 
			
		|||
                "please make sure to initialize the attention class with a layer index."
 | 
			
		||||
            )
 | 
			
		||||
        kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
 | 
			
		||||
 | 
			
		||||
    if use_fuse_rope:
 | 
			
		||||
        query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states,
 | 
			
		||||
                                                                     key_states,
 | 
			
		||||
                                                                     position_ids,
 | 
			
		||||
                                                                     "qwen2")
 | 
			
		||||
    else:
 | 
			
		||||
        cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
 | 
			
		||||
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
 | 
			
		||||
                                                        cos, sin, position_ids, "qwen2")
 | 
			
		||||
    cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
 | 
			
		||||
    query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
 | 
			
		||||
 | 
			
		||||
    if past_key_value is not None:
 | 
			
		||||
        if use_fuse_rope:
 | 
			
		||||
            cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
 | 
			
		||||
        cache_kwargs = {"sin": sin, "cos": cos}  # Specific to RoPE models
 | 
			
		||||
        key_states, value_states = past_key_value.update(key_states,
 | 
			
		||||
                                                         value_states,
 | 
			
		||||
                                                         self.layer_idx,
 | 
			
		||||
                                                         cache_kwargs)
 | 
			
		||||
        # update the number of seen tokens
 | 
			
		||||
        if self.layer_idx == 0:
 | 
			
		||||
            past_key_value.seen_tokens += key_states.shape[-2]
 | 
			
		||||
        
 | 
			
		||||
        if len(past_key_value.key_cache) <= self.layer_idx:
 | 
			
		||||
            past_key_value.key_cache.append(key_states)
 | 
			
		||||
            past_key_value.value_cache.append(value_states)
 | 
			
		||||
        else:
 | 
			
		||||
            cache_k = past_key_value.key_cache[self.layer_idx]
 | 
			
		||||
            cache_v = past_key_value.value_cache[self.layer_idx]
 | 
			
		||||
 | 
			
		||||
            if not enough_kv_room:
 | 
			
		||||
                # allocate new
 | 
			
		||||
                new_c_k, new_c_v = extend_kv_cache(bsz,
 | 
			
		||||
                                                   self.num_key_value_heads,  # Support GQA
 | 
			
		||||
                                                   self.head_dim,
 | 
			
		||||
                                                   cache_k.size(2),
 | 
			
		||||
                                                   kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
 | 
			
		||||
                                                   dtype=cache_k.dtype,
 | 
			
		||||
                                                   device=device)
 | 
			
		||||
 | 
			
		||||
                new_c_k[:] = cache_k
 | 
			
		||||
                new_c_v[:] = cache_v
 | 
			
		||||
                cache_k = new_c_k
 | 
			
		||||
                cache_v = new_c_v
 | 
			
		||||
 | 
			
		||||
            key_states, value_states = append_kv_cache(cache_k,
 | 
			
		||||
                                                       cache_v,
 | 
			
		||||
                                                       key_states,
 | 
			
		||||
                                                       value_states)
 | 
			
		||||
 | 
			
		||||
            # update past_key_value
 | 
			
		||||
            past_key_value.key_cache[self.layer_idx] = key_states
 | 
			
		||||
            past_key_value.value_cache[self.layer_idx] = value_states
 | 
			
		||||
 | 
			
		||||
    # repeat k/v heads if n_kv_heads < n_heads
 | 
			
		||||
    key_states = repeat_kv(key_states, self.num_key_value_groups)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue