parent
21c7503a42
commit
3e8d198b57
1 changed files with 12 additions and 12 deletions
|
|
@ -147,15 +147,15 @@ def run_transformer_int4(repo_id,
|
||||||
# which convert the relevant layers in the model into INT4 format
|
# which convert the relevant layers in the model into INT4 format
|
||||||
st = time.perf_counter()
|
st = time.perf_counter()
|
||||||
if repo_id in CHATGLM_IDS:
|
if repo_id in CHATGLM_IDS:
|
||||||
model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True, torch_dtype='auto')
|
model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True, torch_dtype='auto').eval()
|
||||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||||
elif repo_id in LLAMA_IDS:
|
elif repo_id in LLAMA_IDS:
|
||||||
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True,
|
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True,
|
||||||
use_cache=True)
|
use_cache=True).eval()
|
||||||
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||||
else:
|
else:
|
||||||
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True,
|
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True,
|
||||||
use_cache=True)
|
use_cache=True).eval()
|
||||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||||
end = time.perf_counter()
|
end = time.perf_counter()
|
||||||
print(">> loading of model costs {}s".format(end - st))
|
print(">> loading of model costs {}s".format(end - st))
|
||||||
|
|
@ -275,16 +275,16 @@ def run_optimize_model(repo_id,
|
||||||
# which convert the relevant layers in the model into INT4 format
|
# which convert the relevant layers in the model into INT4 format
|
||||||
st = time.perf_counter()
|
st = time.perf_counter()
|
||||||
if repo_id in CHATGLM_IDS:
|
if repo_id in CHATGLM_IDS:
|
||||||
model = AutoModel.from_pretrained(model_path, torch_dtype='auto', low_cpu_mem_usage=True, trust_remote_code=True)
|
model = AutoModel.from_pretrained(model_path, torch_dtype='auto', low_cpu_mem_usage=True, trust_remote_code=True).eval()
|
||||||
model = optimize_model(model, low_bit=low_bit)
|
model = optimize_model(model, low_bit=low_bit)
|
||||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||||
elif repo_id in LLAMA_IDS:
|
elif repo_id in LLAMA_IDS:
|
||||||
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True,
|
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True,
|
||||||
use_cache=True, low_cpu_mem_usage=True)
|
use_cache=True, low_cpu_mem_usage=True).eval()
|
||||||
model = optimize_model(model, low_bit=low_bit)
|
model = optimize_model(model, low_bit=low_bit)
|
||||||
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||||
else:
|
else:
|
||||||
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype='auto', low_cpu_mem_usage=True)
|
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype='auto', low_cpu_mem_usage=True).eval()
|
||||||
model = optimize_model(model, low_bit=low_bit)
|
model = optimize_model(model, low_bit=low_bit)
|
||||||
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
||||||
end = time.perf_counter()
|
end = time.perf_counter()
|
||||||
|
|
@ -344,17 +344,17 @@ def run_transformer_int4_gpu(repo_id,
|
||||||
st = time.perf_counter()
|
st = time.perf_counter()
|
||||||
if repo_id in CHATGLM_IDS:
|
if repo_id in CHATGLM_IDS:
|
||||||
model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True,
|
model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True,
|
||||||
trust_remote_code=True, use_cache=True)
|
trust_remote_code=True, use_cache=True).eval()
|
||||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||||
model = model.to('xpu')
|
model = model.to('xpu')
|
||||||
elif repo_id in LLAMA_IDS:
|
elif repo_id in LLAMA_IDS:
|
||||||
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True,
|
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True,
|
||||||
use_cache=True)
|
use_cache=True).eval()
|
||||||
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||||
model = model.to('xpu')
|
model = model.to('xpu')
|
||||||
else:
|
else:
|
||||||
model = AutoModelForCausalLM.from_pretrained(model_path, optimize_model=True, load_in_low_bit=low_bit,
|
model = AutoModelForCausalLM.from_pretrained(model_path, optimize_model=True, load_in_low_bit=low_bit,
|
||||||
trust_remote_code=True, use_cache=True)
|
trust_remote_code=True, use_cache=True).eval()
|
||||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||||
model = model.to('xpu')
|
model = model.to('xpu')
|
||||||
if isinstance(model, GPTJForCausalLM):
|
if isinstance(model, GPTJForCausalLM):
|
||||||
|
|
@ -425,19 +425,19 @@ def run_optimize_model_gpu(repo_id,
|
||||||
st = time.perf_counter()
|
st = time.perf_counter()
|
||||||
if repo_id in CHATGLM_IDS:
|
if repo_id in CHATGLM_IDS:
|
||||||
model = AutoModel.from_pretrained(model_path, torch_dtype='auto', low_cpu_mem_usage=True,
|
model = AutoModel.from_pretrained(model_path, torch_dtype='auto', low_cpu_mem_usage=True,
|
||||||
trust_remote_code=True, use_cache=True)
|
trust_remote_code=True, use_cache=True).eval()
|
||||||
model = optimize_model(model, low_bit=low_bit)
|
model = optimize_model(model, low_bit=low_bit)
|
||||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||||
model = model.to('xpu')
|
model = model.to('xpu')
|
||||||
elif repo_id in LLAMA_IDS:
|
elif repo_id in LLAMA_IDS:
|
||||||
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True,
|
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True,
|
||||||
use_cache=True, low_cpu_mem_usage=True)
|
use_cache=True, low_cpu_mem_usage=True).eval()
|
||||||
model = optimize_model(model, low_bit=low_bit)
|
model = optimize_model(model, low_bit=low_bit)
|
||||||
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||||
model = model.to('xpu')
|
model = model.to('xpu')
|
||||||
else:
|
else:
|
||||||
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype='auto', low_cpu_mem_usage=True,
|
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype='auto', low_cpu_mem_usage=True,
|
||||||
trust_remote_code=True, use_cache=True)
|
trust_remote_code=True, use_cache=True).eval()
|
||||||
model = optimize_model(model, low_bit=low_bit)
|
model = optimize_model(model, low_bit=low_bit)
|
||||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||||
model = model.to('xpu')
|
model = model.to('xpu')
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue