diff --git a/python/llm/dev/benchmark/all-in-one/run.py b/python/llm/dev/benchmark/all-in-one/run.py index 3ab3d3ab..865af3f0 100644 --- a/python/llm/dev/benchmark/all-in-one/run.py +++ b/python/llm/dev/benchmark/all-in-one/run.py @@ -147,15 +147,15 @@ def run_transformer_int4(repo_id, # which convert the relevant layers in the model into INT4 format st = time.perf_counter() if repo_id in CHATGLM_IDS: - model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True, torch_dtype='auto') + model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True, torch_dtype='auto').eval() tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) elif repo_id in LLAMA_IDS: model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True, - use_cache=True) + use_cache=True).eval() tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True) else: model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True, - use_cache=True) + use_cache=True).eval() tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) end = time.perf_counter() print(">> loading of model costs {}s".format(end - st)) @@ -275,16 +275,16 @@ def run_optimize_model(repo_id, # which convert the relevant layers in the model into INT4 format st = time.perf_counter() if repo_id in CHATGLM_IDS: - model = AutoModel.from_pretrained(model_path, torch_dtype='auto', low_cpu_mem_usage=True, trust_remote_code=True) + model = AutoModel.from_pretrained(model_path, torch_dtype='auto', low_cpu_mem_usage=True, trust_remote_code=True).eval() model = optimize_model(model, low_bit=low_bit) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) elif repo_id in LLAMA_IDS: model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, - use_cache=True, low_cpu_mem_usage=True) + use_cache=True, low_cpu_mem_usage=True).eval() model = optimize_model(model, low_bit=low_bit) tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True) else: - model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype='auto', low_cpu_mem_usage=True) + model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype='auto', low_cpu_mem_usage=True).eval() model = optimize_model(model, low_bit=low_bit) tokenizer = AutoTokenizer.from_pretrained(model_path) end = time.perf_counter() @@ -344,17 +344,17 @@ def run_transformer_int4_gpu(repo_id, st = time.perf_counter() if repo_id in CHATGLM_IDS: model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True, - trust_remote_code=True, use_cache=True) + trust_remote_code=True, use_cache=True).eval() tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) model = model.to('xpu') elif repo_id in LLAMA_IDS: model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True, - use_cache=True) + use_cache=True).eval() tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True) model = model.to('xpu') else: model = AutoModelForCausalLM.from_pretrained(model_path, optimize_model=True, load_in_low_bit=low_bit, - trust_remote_code=True, use_cache=True) + trust_remote_code=True, use_cache=True).eval() tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) model = model.to('xpu') if isinstance(model, GPTJForCausalLM): @@ -425,19 +425,19 @@ def run_optimize_model_gpu(repo_id, st = time.perf_counter() if repo_id in CHATGLM_IDS: model = AutoModel.from_pretrained(model_path, torch_dtype='auto', low_cpu_mem_usage=True, - trust_remote_code=True, use_cache=True) + trust_remote_code=True, use_cache=True).eval() model = optimize_model(model, low_bit=low_bit) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) model = model.to('xpu') elif repo_id in LLAMA_IDS: model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, - use_cache=True, low_cpu_mem_usage=True) + use_cache=True, low_cpu_mem_usage=True).eval() model = optimize_model(model, low_bit=low_bit) tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True) model = model.to('xpu') else: model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype='auto', low_cpu_mem_usage=True, - trust_remote_code=True, use_cache=True) + trust_remote_code=True, use_cache=True).eval() model = optimize_model(model, low_bit=low_bit) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) model = model.to('xpu')