Update readme & quickstart (#10685)
This commit is contained in:
		
							parent
							
								
									39ff586454
								
							
						
					
					
						commit
						3e4fbee87c
					
				
					 5 changed files with 25 additions and 9 deletions
				
			
		| 
						 | 
				
			
			@ -7,7 +7,7 @@
 | 
			
		|||
**`IPEX-LLM`** is a PyTorch library for running **LLM** on Intel CPU and GPU *(e.g., local PC with iGPU, discrete GPU such as Arc, Flex and Max)* with very low latency[^1]. 
 | 
			
		||||
> [!NOTE]
 | 
			
		||||
> - *It is built on top of **Intel Extension for PyTorch** (**`IPEX`**), as well as the excellent work of **`llama.cpp`**, **`bitsandbytes`**, **`vLLM`**, **`qlora`**, **`AutoGPTQ`**, **`AutoAWQ`**, etc.*
 | 
			
		||||
> - *It provides seamless integration with [llama.cpp](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/llama_cpp_quickstart.html), [Text-Generation-WebUI](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/webui_quickstart.html), [HuggingFace transformers](python/llm/example/GPU/HF-Transformers-AutoModels), [HuggingFace PEFT](python/llm/example/GPU/LLM-Finetuning), [LangChain](python/llm/example/GPU/LangChain), [LlamaIndex](python/llm/example/GPU/LlamaIndex), [DeepSpeed-AutoTP](python/llm/example/GPU/Deepspeed-AutoTP), [vLLM](python/llm/example/GPU/vLLM-Serving), [FastChat](python/llm/src/ipex_llm/serving/fastchat), [HuggingFace TRL](python/llm/example/GPU/LLM-Finetuning/DPO), [AutoGen](python/llm/example/CPU/Applications/autogen), [ModeScope](python/llm/example/GPU/ModelScope-Models), etc.* 
 | 
			
		||||
> - *It provides seamless integration with [llama.cpp](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/llama_cpp_quickstart.html), [ollama](https://ipex-llm.readthedocs.io/en/main/doc/LLM/Quickstart/ollama_quickstart.html), [Text-Generation-WebUI](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/webui_quickstart.html), [HuggingFace transformers](python/llm/example/GPU/HF-Transformers-AutoModels), [HuggingFace PEFT](python/llm/example/GPU/LLM-Finetuning), [LangChain](python/llm/example/GPU/LangChain), [LlamaIndex](python/llm/example/GPU/LlamaIndex), [DeepSpeed-AutoTP](python/llm/example/GPU/Deepspeed-AutoTP), [vLLM](python/llm/example/GPU/vLLM-Serving), [FastChat](python/llm/src/ipex_llm/serving/fastchat), [HuggingFace TRL](python/llm/example/GPU/LLM-Finetuning/DPO), [AutoGen](python/llm/example/CPU/Applications/autogen), [ModeScope](python/llm/example/GPU/ModelScope-Models), etc.* 
 | 
			
		||||
> - ***50+ models** have been optimized/verified on `ipex-llm` (including LLaMA2, Mistral, Mixtral, Gemma, LLaVA, Whisper, ChatGLM, Baichuan, Qwen, RWKV, and more); see the complete list [here](#verified-models).*
 | 
			
		||||
 | 
			
		||||
## `ipex-llm` Demo
 | 
			
		||||
| 
						 | 
				
			
			@ -48,6 +48,7 @@ See the demo of running [*Text-Generation-WebUI*](https://ipex-llm.readthedocs.i
 | 
			
		|||
</table>
 | 
			
		||||
       
 | 
			
		||||
## Latest Update 🔥 
 | 
			
		||||
- [2024/04] `ipex-llm` now provides C++ interface, which can be used as an accelerated backend for running [llama.cpp](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/llama_cpp_quickstart.html) and [ollama](https://ipex-llm.readthedocs.io/en/main/doc/LLM/Quickstart/ollama_quickstart.html) on Intel GPU.
 | 
			
		||||
- [2024/03] `bigdl-llm` has now become `ipex-llm` (see the migration guide [here](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/bigdl_llm_migration.html)); you may find the original `BigDL` project [here](https://github.com/intel-analytics/bigdl-2.x).
 | 
			
		||||
- [2024/02] `ipex-llm` now supports directly loading model from [ModelScope](python/llm/example/GPU/ModelScope-Models) ([魔搭](python/llm/example/CPU/ModelScope-Models)).
 | 
			
		||||
- [2024/02] `ipex-llm` added initial **INT2** support (based on llama.cpp [IQ2](python/llm/example/GPU/HF-Transformers-AutoModels/Advanced-Quantizations/GGUF-IQ2) mechanism), which makes it possible to run large-size LLM (e.g., Mixtral-8x7B) on Intel GPU with 16GB VRAM.
 | 
			
		||||
| 
						 | 
				
			
			@ -81,7 +82,8 @@ See the demo of running [*Text-Generation-WebUI*](https://ipex-llm.readthedocs.i
 | 
			
		|||
- *For more details, please refer to the [installation guide](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Overview/install.html)*
 | 
			
		||||
 | 
			
		||||
### Run `ipex-llm`
 | 
			
		||||
- [llama.cpp](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/llama_cpp_quickstart.html): running **ipex-llm for llama.cpp** (*using C++ interface of `ipex-llm` as an accelerated backend for `llama.cpp` on Intel GPU*)
 | 
			
		||||
- [llama.cpp](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/llama_cpp_quickstart.html): running **llama.cpp** (*using C++ interface of `ipex-llm` as an accelerated backend for `llama.cpp`*) on Intel GPU
 | 
			
		||||
- [ollama](https://ipex-llm.readthedocs.io/en/main/doc/LLM/Quickstart/ollama_quickstart.html): running **ollama** (*using C++ interface of `ipex-llm` as an accelerated backend for `ollama`*) on Intel GPU
 | 
			
		||||
- [vLLM](python/llm/example/GPU/vLLM-Serving): running `ipex-llm` in `vLLM` on both Intel [GPU](python/llm/example/GPU/vLLM-Serving) and [CPU](python/llm/example/CPU/vLLM-Serving)
 | 
			
		||||
- [FastChat](python/llm/src/ipex_llm/serving/fastchat): running `ipex-llm` in `FastChat` serving on on both Intel GPU and CPU
 | 
			
		||||
- [LangChain-Chatchat RAG](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/chatchat_quickstart.html): running `ipex-llm` in `LangChain-Chatchat` (*Knowledge Base QA using **RAG** pipeline*)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1,8 +1,9 @@
 | 
			
		|||
 | 
			
		||||
# Run Code Copilot on Windows with Intel GPU
 | 
			
		||||
# Run Coding Copilot on Windows with Intel GPU
 | 
			
		||||
 | 
			
		||||
[**Continue**](https://marketplace.visualstudio.com/items?itemName=Continue.continue) is a coding copilot extension in [Microsoft Visual Studio Code](https://code.visualstudio.com/); by porting it to [`ipex-llm`](https://github.com/intel-analytics/ipex-llm), users can now easily leverage local llms running on Intel GPU (e.g., local PC with iGPU, discrete GPU such as Arc, Flex and Max) for code explanation, code generation/completion; see the demos of using Continue with [Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) running on Intel A770 GPU below.
 | 
			
		||||
[**Continue**](https://marketplace.visualstudio.com/items?itemName=Continue.continue) is a coding copilot extension in [Microsoft Visual Studio Code](https://code.visualstudio.com/); by porting it to [`ipex-llm`](https://github.com/intel-analytics/ipex-llm), users can now easily leverage local LLMs running on Intel GPU (e.g., local PC with iGPU, discrete GPU such as Arc, Flex and Max) for code explanation, code generation/completion, etc.
 | 
			
		||||
 | 
			
		||||
See the demos of using Continue with [Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) running on Intel A770 GPU below.
 | 
			
		||||
 | 
			
		||||
<table border="1" width="100%">
 | 
			
		||||
  <tr>
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1,6 +1,6 @@
 | 
			
		|||
# Run llama.cpp with IPEX-LLM on Intel GPU 
 | 
			
		||||
 | 
			
		||||
[ggerganov/llama.cpp](https://github.com/ggerganov/llama.cpp) prvoides fast LLM inference in in pure C++ across a variety of hardware; you can now use the C++ interface of `ipex-llm` as an accelerated backend for `llama.cpp` running on Intel **GPU** *(e.g., local PC with iGPU, discrete GPU such as Arc, Flex and Max)*.
 | 
			
		||||
[ggerganov/llama.cpp](https://github.com/ggerganov/llama.cpp) prvoides fast LLM inference in in pure C++ across a variety of hardware; you can now use the C++ interface of [`ipex-llm`](https://github.com/intel-analytics/ipex-llm) as an accelerated backend for `llama.cpp` running on Intel **GPU** *(e.g., local PC with iGPU, discrete GPU such as Arc, Flex and Max)*.
 | 
			
		||||
 | 
			
		||||
See the demo of running LLaMA2-7B on Intel Arc GPU below.
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1,10 +1,16 @@
 | 
			
		|||
# Run Ollama on Linux with Intel GPU
 | 
			
		||||
 | 
			
		||||
The [ollama/ollama](https://github.com/ollama/ollama) is popular framework designed to build and run language models on a local machine. Now you can run Ollama with [`ipex-llm`](https://github.com/intel-analytics/ipex-llm) on Intel GPU (e.g., local PC with iGPU, discrete GPU such as Arc, Flex and Max); see the demo of running LLaMA2-7B on an Intel A770 GPU below.
 | 
			
		||||
[ollama/ollama](https://github.com/ollama/ollama) is popular framework designed to build and run language models on a local machine; you can now use the C++ interface of [`ipex-llm`](https://github.com/intel-analytics/ipex-llm) as an accelerated backend for `ollama` running on Intel **GPU** *(e.g., local PC with iGPU, discrete GPU such as Arc, Flex and Max)*.
 | 
			
		||||
 | 
			
		||||
```eval_rst
 | 
			
		||||
.. note::
 | 
			
		||||
   Only Linux is currently supported.
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
See the demo of running LLaMA2-7B on Intel Arc GPU below.
 | 
			
		||||
 | 
			
		||||
<video src="https://llm-assets.readthedocs.io/en/latest/_images/ollama-linux-arc.mp4" width="100%" controls></video>
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
## Quickstart
 | 
			
		||||
 | 
			
		||||
### 1 Install IPEX-LLM with Ollama Binaries
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -33,7 +33,7 @@
 | 
			
		|||
               It is built on top of <strong>Intel Extension for PyTorch</strong> (<strong><code><span>IPEX</span></code></strong>), as well as the excellent work of <strong><code><span>llama.cpp</span></code></strong>, <strong><code><span>bitsandbytes</span></code></strong>, <strong><code><span>vLLM</span></code></strong>, <strong><code><span>qlora</span></code></strong>, <strong><code><span>AutoGPTQ</span></code></strong>, <strong><code><span>AutoAWQ</span></code></strong>, etc. 
 | 
			
		||||
            </li></em>
 | 
			
		||||
            <li><em>
 | 
			
		||||
               It provides seamless integration with <a href=doc/LLM/Quickstart/llama_cpp_quickstart.html>llama.cpp</a>, <a href=doc/LLM/Quickstart/webui_quickstart.html>Text-Generation-WebUI</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels>HuggingFace transformers</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/LLM-Finetuning>HuggingFace PEFT</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/LangChain >LangChain</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/LlamaIndex >LlamaIndex</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/Deepspeed-AutoTP >DeepSpeed-AutoTP</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/vLLM-Serving >vLLM</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/src/ipex_llm/serving/fastchat>FastChat</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/LLM-Finetuning/DPO>HuggingFace TRL</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/Applications/autogen >AutoGen</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/ModelScope-Models >ModeScope</a>, etc.
 | 
			
		||||
               It provides seamless integration with <a href=doc/LLM/Quickstart/llama_cpp_quickstart.html>llama.cpp</a>, <a href=doc/LLM/Quickstart/ollama_quickstart.html>ollama</a>, <a href=doc/LLM/Quickstart/webui_quickstart.html>Text-Generation-WebUI</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels>HuggingFace transformers</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/LLM-Finetuning>HuggingFace PEFT</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/LangChain >LangChain</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/LlamaIndex >LlamaIndex</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/Deepspeed-AutoTP >DeepSpeed-AutoTP</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/vLLM-Serving >vLLM</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/src/ipex_llm/serving/fastchat>FastChat</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/LLM-Finetuning/DPO>HuggingFace TRL</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/Applications/autogen >AutoGen</a>, <a href=https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/ModelScope-Models >ModeScope</a>, etc.
 | 
			
		||||
            </li></em>
 | 
			
		||||
            <li><em>
 | 
			
		||||
               <strong>50+ models</strong> have been optimized/verified on <code><span>ipex-llm</span></code> (including LLaMA2, Mistral, Mixtral, Gemma, LLaVA, Whisper, ChatGLM, Baichuan, Qwen, RWKV, and more); see the complete list <a href=#verified-models>here</a>.
 | 
			
		||||
| 
						 | 
				
			
			@ -44,6 +44,8 @@
 | 
			
		|||
************************************************
 | 
			
		||||
Latest update 🔥
 | 
			
		||||
************************************************
 | 
			
		||||
 | 
			
		||||
* [2024/04] ``ipex-llm`` now provides C++ interface, which can be used as an accelerated backend for running `llama.cpp <doc/LLM/Quickstart/llama_cpp_quickstart.html>`_ and `ollama <doc/LLM/Quickstart/ollama_quickstart.html>`_ on Intel GPU.
 | 
			
		||||
* [2024/03] ``bigdl-llm`` has now become ``ipex-llm`` (see the migration guide `here <doc/LLM/Quickstart/bigdl_llm_migration.html>`_); you may find the original ``BigDL`` project `here <https://github.com/intel-analytics/bigdl-2.x>`_.
 | 
			
		||||
* [2024/02] ``ipex-llm`` now supports directly loading model from `ModelScope <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/ModelScope-Models>`_ (`魔搭 <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/ModelScope-Models>`_).
 | 
			
		||||
* [2024/02] ``ipex-llm`` added inital **INT2** support (based on llama.cpp `IQ2 <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels/Advanced-Quantizations/GGUF-IQ2>`_ mechanism), which makes it possible to run large-size LLM (e.g., Mixtral-8x7B) on Intel GPU with 16GB VRAM.
 | 
			
		||||
| 
						 | 
				
			
			@ -106,6 +108,10 @@ See the **optimized performance** of ``chatglm2-6b`` and ``llama-2-13b-chat`` mo
 | 
			
		|||
``ipex-llm`` Quickstart
 | 
			
		||||
************************************************
 | 
			
		||||
 | 
			
		||||
============================================
 | 
			
		||||
Install ``ipex-llm``
 | 
			
		||||
============================================
 | 
			
		||||
 | 
			
		||||
* `Windows GPU <doc/LLM/Quickstart/install_windows_gpu.html>`_: installing ``ipex-llm`` on Windows with Intel GPU
 | 
			
		||||
* `Linux GPU <doc/LLM/Quickstart/install_linux_gpu.html>`_: installing ``ipex-llm`` on Linux with Intel GPU
 | 
			
		||||
* `Docker <https://github.com/intel-analytics/ipex-llm/tree/main/docker/llm>`_: using ``ipex-llm`` dockers on Intel CPU and GPU
 | 
			
		||||
| 
						 | 
				
			
			@ -118,7 +124,8 @@ See the **optimized performance** of ``chatglm2-6b`` and ``llama-2-13b-chat`` mo
 | 
			
		|||
Run ``ipex-llm``
 | 
			
		||||
============================================
 | 
			
		||||
 | 
			
		||||
* `llama.cpp <doc/LLM/Quickstart/llama_cpp_quickstart.html>`_: running **ipex-llm for llama.cpp** (*using C++ interface of* ``ipex-llm`` *as an accelerated backend for* ``llama.cpp`` *on Intel GPU*)
 | 
			
		||||
* `llama.cpp <doc/LLM/Quickstart/llama_cpp_quickstart.html>`_: running **llama.cpp** (*using C++ interface of* ``ipex-llm`` *as an accelerated backend for* ``llama.cpp``) on Intel GPU
 | 
			
		||||
* `ollama <doc/LLM/Quickstart/ollama_quickstart.html>`_: running **ollama** (*using C++ interface of* ``ipex-llm`` *as an accelerated backend for* ``ollama``) on Intel GPU
 | 
			
		||||
* `vLLM <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/vLLM-Serving>`_: running ``ipex-llm`` in ``vLLM`` on both Intel `GPU <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/vLLM-Serving>`_ and `CPU <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/vLLM-Serving>`_
 | 
			
		||||
* `FastChat <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/src/ipex_llm/serving/fastchat>`_: running ``ipex-llm`` in ``FastChat`` serving on on both Intel GPU and CPU
 | 
			
		||||
* `LangChain-Chatchat RAG <https://github.com/intel-analytics/Langchain-Chatchat>`_: running ``ipex-llm`` in ``LangChain-Chatchat`` (*Knowledge Base QA using* **RAG** *pipeline*)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue